

Current developments and perspectives for polymer-based and metal-halide perovskite solar cells

Thomas Kirchartz IEK-5 Photovoltaik, Forschungszentrum Jülich NST and CENIDE, Universität Duisburg-Essen

Outline

Perovskite based solar cells

- Defects (Recombination, Metastabilities)
- Degradation
- Contacts

Organic Solar Cells

Organic solar cells

- Acceptor molecules
- Charge collection

Shockley-Queisser Limit

Recent Trends in Solution Processable PV

Efficiency Increase of Perovskite Solar Cells

Recent Trends in Solution Processable PV

Efficiency Increase of Perovskite Solar Cells

Electron-photon coupling should be faster than electron-phonon coupling!

Transient Photoluminescence of CH₃NH₃Pbl₃ Films on Glass

$$-\frac{dn}{dt} = \frac{n}{\tau} + k^* n^2 + Cn^3$$

07.03.2018

Transient Photoluminescence of CH₃NH₃Pbl₃ Films on Glass

$$-\frac{dn}{dt} = \frac{n}{\tau} + k^* n^2 + Cn^3$$

Lifetime $\tau \sim 500$ ns extremely long for polycrystalline semiconductors

Staub et al. Phys. Rev. Appl. 6, 044017 (2016)

Effect of Lifetime on V_{oc} Including Photon Recycling

Kirchartz et al. ACS Energy Lett. 6, 044017 (2016)

Effect of Lifetime on V_{oc}

Lead-Halide Perovskites

Long Lifetimes due to Low Densities of Deep Defects

Yin et al., Appl. Phys. Lett. 104, 063903 (2014)

Multiphonon Recombination

Kirchartz et al., J. Phys. Chem Lett. 9, 939 (2018)

Multiphonon Recombination

Benefits of low phonon energies in polar semiconductors

Kirchartz et al., J. Phys. Chem Lett. 9, 939 (2018)

Transient Effects

Ion Movement

Shallow acceptors

Yin et al., Appl. Phys. Lett. 104, 063903 (2014)

Tress, J. Phys. Chem Lett. 8, 3106 (2017)

Transient Effects

Long Term Degradation and Recovery

Combination of reversible and irreversible degradation mechanisms.

Domanski et al., Nat Energy. 3, 61 (2018)

Degradation

Depends on working point, temperature and contact

Grancini et al. Nat. Comms. (2017)

Metal-Halide Perovskites

Potential

- Efficiencies and long charge carrier lifetimes
- High Band Gaps \rightarrow Potential for Tandems
- Solution processing (potential for cheap manufacturing)

Challenges

- Many shallow defects \rightarrow transient effects
- Interaction of contacts with degradation and surface recombination
- Toxicity (heavy atoms \rightarrow long charge carrier lifetimes?)

Recent trends in solution processable PV

Non-Fullerene Acceptor Materials in Organic PV

Polymer:Fullerene

Novel acceptor materials (IDTBR, IDFBR)

Non-Fullerene Acceptor Materials in Organic PV

Non-Fullerene Acceptor Materials in Organic PV

Charge Transport

22

Charge Transport

Kirchartz et al. J. Phys. Chem. C (2018)

Charge Transport

Kirchartz et al. J. Phys. Chem. C (2018)

Summary Organic Solar Cells

Potential

- Efficiencies are improving again thanks to NFAs
- Variable band gaps (tandems are also possible)
- Solution processing (potential for cheap manufacturing)
- Many degrees of freedom in organic synthesis

Challenges

- Rapid testing (how to identify promising materials?)
- Charge Transport is main hindrance at the moment
- Stability

Thank you for your attention

Thanks to Derya Baran, Florian Staub, Pascal Kaienburg, David Egger and Uwe Rau

and Helmholtz for funding!