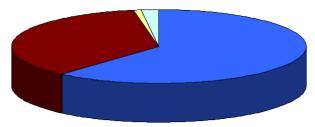

Decommissioning of Nuclear Facilities

Th. Walter Tromm, Programme Nuclear Waste Management, Safety and Radiation Research



Situation of nuclear power reactors in the EU

- Operational
- Shutdown Dismantling
- Fully Dismantled
- Long Term Safe Enclosure

TOTAL
Power reactors in EU: 220
Operating reactors: 135

Source: European Commission

Overview of German NPPs

NPPs in operation:

GKN-2 Neckarwestheim KRB C Gundremmingen

KBR Brokdorf KWG Grohnde

KKP-2 Philippsburg

KKF Fmsland

KKI-2 Isar

Shut down NPPs:

KKB Brunsbüttel KKK Krümmel KKG Grafenrheinfeld

"Green field":

KKN Niederaichbach HDR Großwelzheim VAK Kahl

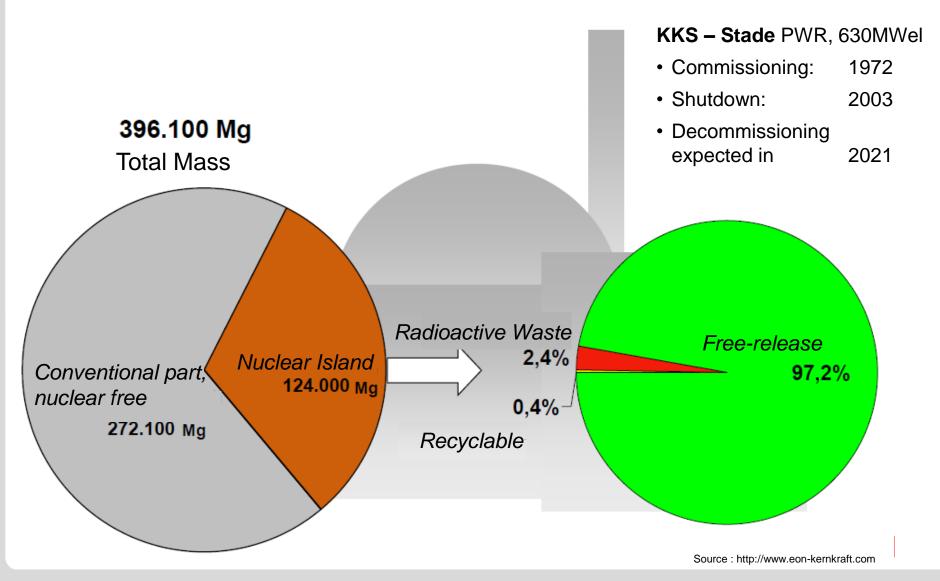
NPPs in dismantling: KKU Unterweser

KRB B Gundremmingen **GKN-1 Neckarwestheim** KKP-1 Philippsburg KWB A Biblis KWB B Biblis KKI-1 Isar MZFR Karlsruhe **AVR Jülich** KKW Mülheim-Kärlich KKR Rheinsberg KGR 1-5, Greifswald KNK II Karlsruhe KKS Stade KWO Obrigheim (KWW Würgassen) (KRB A Gundremmingen)

Plants in safe store:

FR2, KWL Lingen, THTR Hamm-Uentrop

Remaining terms according to current legislation



Power Plant	First criticality	Capacity MW _e	Scheduled Shut-Down
Philippsburg 2	13.12.1984	1 468	12/2019
Grohnde	01.09.1984	1 430	12/2021
Gundremmingen C	26.10.1984	1 344	12/2021
Brokdorf	08.10.1986	1 480	12/2021
Isar 2	15.01.1988	1 485	12/2022
Emsland	14.04.1988	1 400	12/2022
Neckarwestheim 2	29.12.1988	1 400	12/2022

Source: http://www.kernenergie.de

Example of Stade

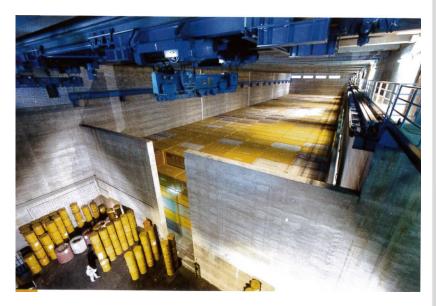
Federal Nuclear Waste Repository in Germany

- Nuclear waste repository for high-level radioactive waste, heat generating materials/fuel elements
 - 9. April 2013 a new approach to finding a repository was started

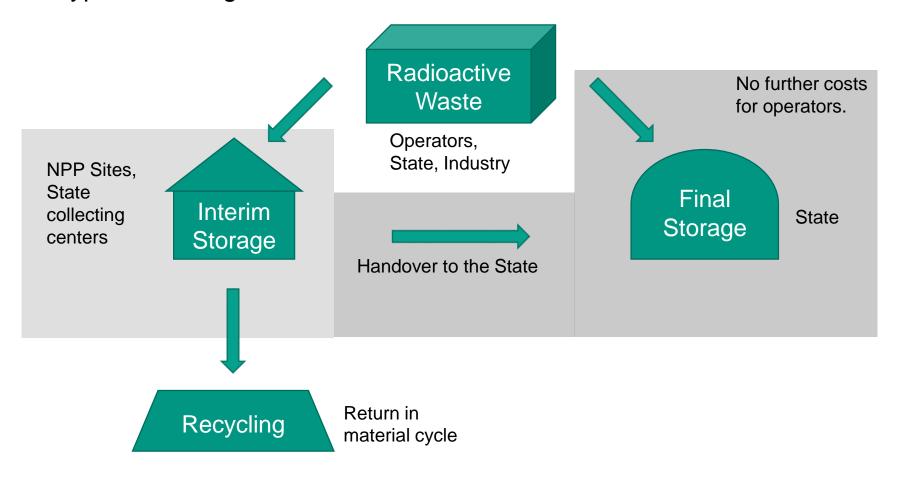
DPG Tagung Rostock, AKE, 11/03/19

- Decision for a location expected in 2031
- Repository for low and medium radioactive materials/waste:
 - **Konrad:**

11/03/2019

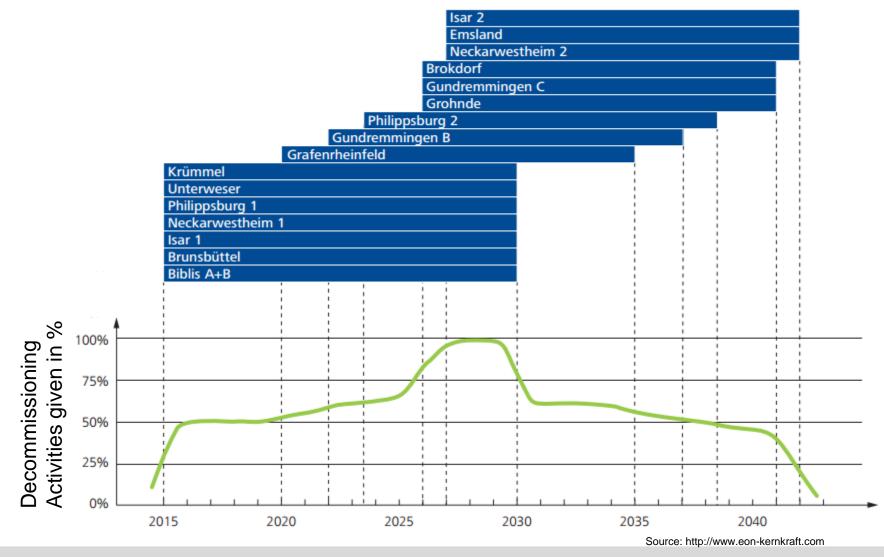

- > Former ore mine
- Deposit depth 800-1300m
- Approved storage volume 303.000m³
- Waste: 40% public and 60% utilities
- Completion was planned for 2013 -> expected 2027!!
- Estimated costs about 2.2 billion €

Interim storages in Germany


- At most NPP for used/spent fuel and decommissioning waste
- Federal state collecting facility (waste from industry, research and medicine)
- Central collecting points (Gorleben, Esenshamm, Mitterteich, ZLN, Ahaus)
- Interim storage at research facilities (for operational waste)
- In December 2016 a new law: the nuclear waste management liabilities are passed to the state
- Operators have transferred <u>24 billion €</u> on the 3rd of July 2017
- Started in 2019, the ownership of the radioactive waste will be passed to the federal state

Waste Liability (change in 2017 by law)

Types of storage facilities



DPG Tagung Rostock, AKE, 11/03/19

11/03/2019

Future Challenges in Germany

Nuclear Waste Management, Safety and Radiation Research

Participating Helmholtz - Centres

Forschungszentrum Jülich GmbH (FZJ)

Helmholtz – Zentrum Dresden – Rossendorf (HZDR)

11/03/2019

Karlsruher Institut für Technologie (KIT)

Statements from Mid-term evaluation 2018:

DPG Tagung Rostock, AKE, 11/03/19

- The work is well recognised at international level
- The research facilities constitute a particular strength

Nuclear Safety Organisations in Germany

Advisor

Reactor Safety Commission Nuclear Waste Management Commission Commission on Radiological Protection

Safety analysis by TSO

GRS

Regulator

BfE State Ministries

Nuclear safety for reactors, waste storage and disposal

Nuclear Scientific background Helmholtz

Operator/
Implementor
Utilities

BGE

BGZ

BMBF

BMWI

Application oriented fundamental research

Universities Öko-Institut

. . .

Competences at KIT in Decommissioning of nuclear Facilities

INE

- Hot cells
- Radio analytics
- Waste characterization
- Product characterization
- Product behavior (long-term)
- Conditioning
- Radionuclide behavior
- Radiation protection research

TMB/RKKB

Innovative mechanical decontamination

- Crushing techniques
- Automation
- Minimizing dose rate
- Minimizing waste
- Management

INR

- Shielding calculations
- Determining radionuclide vector
- Detectors
- Instrumentation

IMB/MPA

- Concrete and Building Physics
- Materials and components
- Measurement and Nuclear Safety
- Chemistry and Physics of Materials

IHM

- Microwave application
- techniques

Long-term KIT-Cooperation

- **EU (EURATOM)**
- IAEA, OECD-NEA
- F: CEA, ANDRA. EdF
- CH: PSI, ENSI, NAGRA

Innovative separation

ITAS

- Socio-scientific, political issues
- Public involvement
- Governance

Karlsruhe Institute of Technology

IIP

- Decommissioning planning and optimization
- Project management in decommissioning

IfGG

- Regional and local influences
- Socio-geographic analysis
- Economic, social issues
- Scenario development

PTKA-WTE

BMBF/BMWI funding

- Decommissioning projects
- Research and development for dismantling

IAM

- Material behavior
- Fuel
- Cladding tubes
- Characterization

SUM

- Radiation protection
- Personal dosimetry
- Radioactive monitoring
- Contact to authority

IKET

- Long term activity inventory
- **Emergency Response** Management

Education / Teaching

- KIT School of Energy
- TMB-Module "Dismantling of nuclear facilities"
- AREVA Professional School
- Radiochemistry
- Radiation protection

Division of Deconstruction and Decommissioning of Conventional and Nuclear Buildings (RKKB)

- Development and improvement of processes and technologies
- Automation and remote handling of procedures
- Project management (reduction of time, cost and risk)
- Preservation of competence (lectures, doctoral candidates, internships)

Prof. Dr.-Ing. Sascha Gentes

Manipulator for the decontamination of walls as an R&D example

11/03/2019

Decommissioning of nuclear facilities lecture

DPG Tagung Rostock, AKE, 11/03/19

IAEA workshop dismantling of nuclear facilities

Decommissioning Department at TMB

Test Facilities and Resources

Test Facilities

Decommissioning Department at TMB

Underwater testing facility

Mock-up on a scale of 1 : 1

Test Field

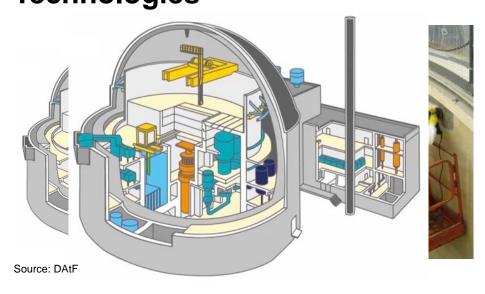
Mock-up at TMB

Cold test at the institute

11/03/2019

DPG Tagung Rostock, AKE, 11/03/19

Practical application in the KNK plant



Dismantling and extraction of heavy concrete with chisel and suction pipe

KIT TMB approach: Industrial application: R&D example: Concrete Decontamination Technologies

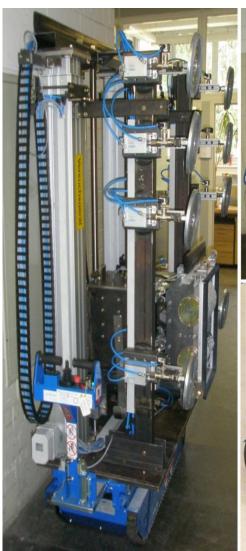
Manual work during:

- Removal, dismantlement and transport of contaminated components
- Characterization and decontamination of surfaces

Driver for automated systems and manipulators with high precision

Optimization and Application of the Technology

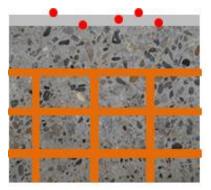
Outlook:

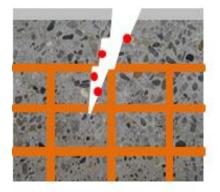

- Further analysis of parameters
- Experimental investigation at KIT and application in the nuclear power plant Obrigheim

Project partner

DPG Tagung Rostock, AKE, 11/03/19

- Energie Baden-Württemberg AG (EnBW)
- Patent awarded
- Minimization of secondary waste
- Minimization of exposure time

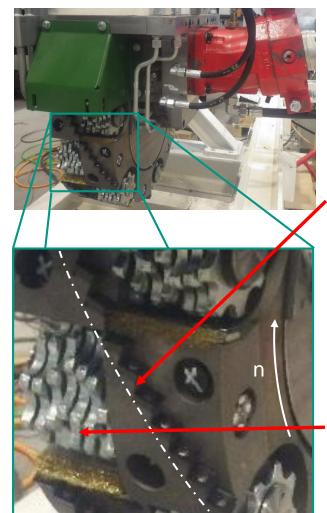


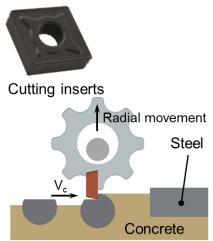


Selective Removal of Highly Reinforced Concrete Structures

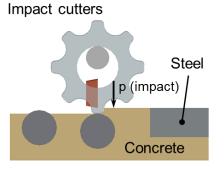
- Problem: Cracks in the surface not to be measured
- Solution: Combined tool to remove both materials
- Decontamination of cracks (up 300mm depth)
- Removal of built-in elements (e.g. anchor plates, dowels)

Cooperation between:




SPONSORED BY THE

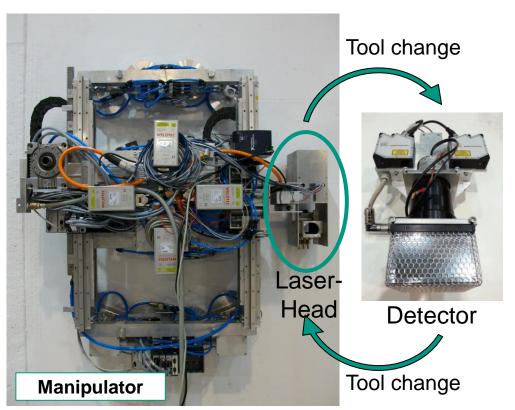
Deep Decontamination of Concrete Surfaces



Kaiser, S. et al. (2017) Development of a tool system for the surface decontamination of reinforced concrete structures, KONTEC

Manipulator Operated Laser Ablation and Release Measurement of Surfaces (MANOLA/MAFRO)

Procedural chain for decontamination (in general):


Contamination Measurement

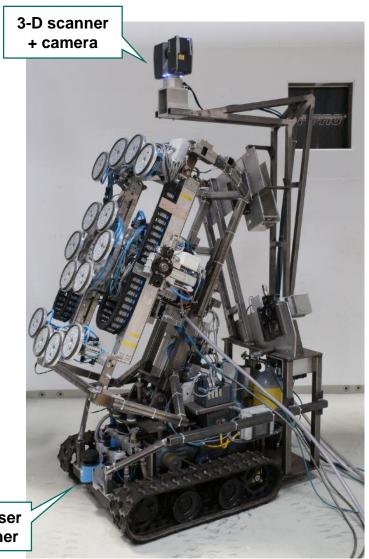
Decontamination

Release Measurement

Problem:

Measurement of surfaces is still performed manually

Goals:

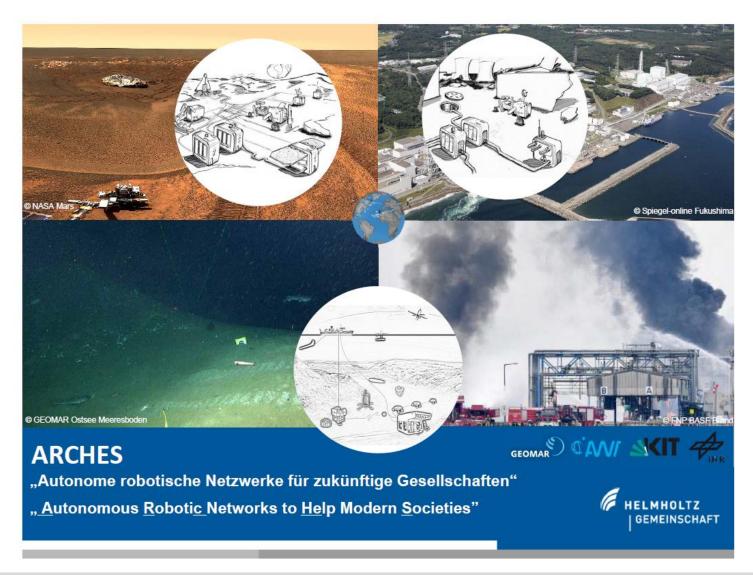

Combining the individual steps

- Contamination Measurement
- Decontamination
- Release Measurement in a single system!
- Autonomous navigation and documentation

Trolley System

Specifications:

- Crawler tracks for difficult terrain
- Rotatable device to carry, deploy, and retrieve manipulator (also for the quickcoupling system)
- Additional sensors
- High-resolution 3-D laser scanner for exploration and environmental model generation
- 2-D laser scanner and camera for navigation and localization



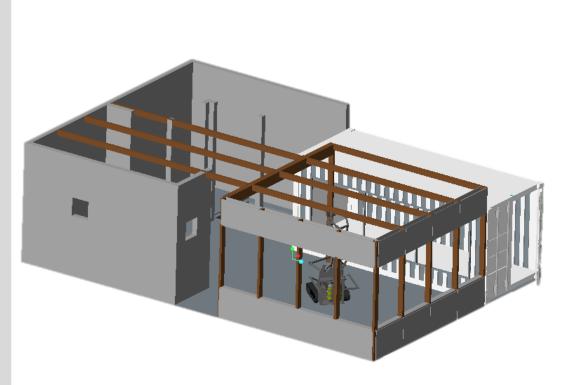
2-D laser scanner

DPG Tagung Rostock, AKE, 11/03/19

HELMHOLTZ IVF: ARCHES

Robotic systems for decontamination in hazardous environments (ROBDEKON)

- Goal: Creation of an innovation laboratory / competence center
- Decontamination and free measurement in hazardous environments, for example in nuclear installations
- Budget: 12 Mio. € (thereof € 1.2 million at KIT-TMB) by the BMBF
- Duration of 4 years with possible follow-up funding (Start: 15.06.2018)
- Project network of IOSB, KIT, DFKI and FZI, as well as outstanding research infrastructure and living labs for students, scientists and representatives of the industry
- Partner:

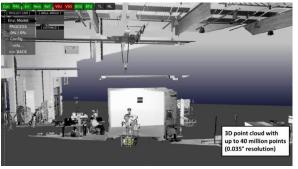


SPONSORED BY THE

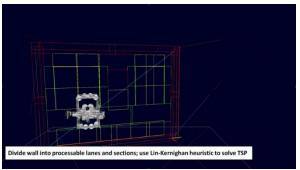
Part of the KIT Institute for Technology and **Management in Construction (TMB)**

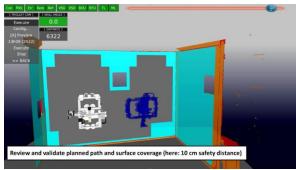
Design of the robot Living Labs for mapping, characterization, decontamination and free release measurement

DPG Tagung Rostock, AKE, 11/03/19


Manipulator for mapping and characterization (MAFRO)

11/03/2019

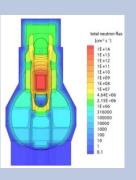

Decontamination and Characterization (MAFRO)



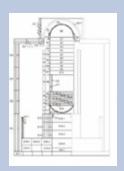
In cooperation with the Institute for Intelligent Process Automation and Robotics Lab (IPR) Partner of the ROBDEKON consortium:

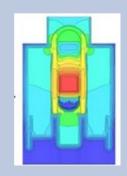
SPONSORED BY THE

Federal Ministry of Education and Research

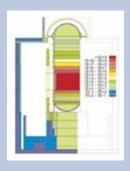

https://www.ipr.kit.edu/

lize and store detector head measurements for documentat


Knowledge of the radiation transport and distribution


Neutron-flux distribution

Activation of NPP components



Doseratedistribution

DPG Tagung Rostock, AKE, 11/03/19

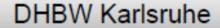
Materialcomposition

Aim:

- Development of appropriate decommissioning concepts
- **Packiging**
- Characterisation of components
- Planning of work steps

Objective to facilitate:

- Regulatory decisions
- Radiation protection measures
- Safety demonstration


Foundation of the Decommissioning Cluster

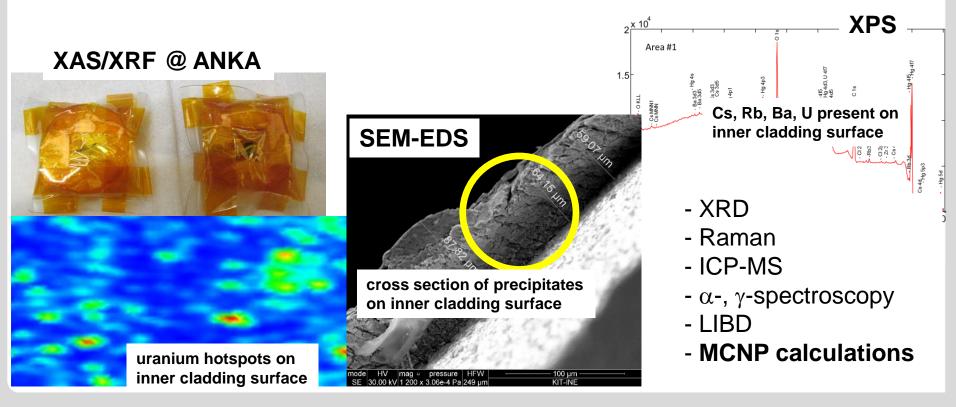
Involved Institutions:

IKE u. MPA Universität Stuttgart

KIT Competence Center for Decommissioning

Zircaloy cladding performance under prolonged dry interim storage

- Integrity of spent fuel assemblies (FA) after dry interim storage important.
 → safe reloading of spent FA from interim storage cask to final disposal canister.
- Integrity of Zircaloy cladding affected by:
 - coolant (oxidation and hydride uptake).
 - mechanical stress (fuel pellet swelling and He accumulation).
 - fuel-clad-chemical-interaction (corrosion with volatile fission products at cladding / fuel interface).
- Black/blueish precipitates on the inner surface of irradiated Zircaloy-4 cladding observed at KIT-INE.



Zircaloy cladding performance under prolonged dry interim storage

- Investigations at KIT-INE focus on:
 - interaction of irradiated UOX and MOX fuel pellets with the cladding.
 - minor actinides / fission products accumulation on inner cladding surface.
- Use of various chemical / theoretical / spectroscopic techniques for characterization of cladding surface precipitates.

Strategic objectives of the decommissioning cluster

- Coordination and bundling of activities:
 - in research, teaching and training
- Enhanced cooperation:
 - with other universities, research centers, government agencies and industry, in Germany and in Europe.
 - Cooperative support international initiatives to maintain competence (as Summer Schools in Decommissioning).
 - Tracking of trends in job development and representation of training capacity
 - Further research and development for an integral approach related to predisposal activities.

11/03/2019

