Decarbonization of the European energy system with strong sector couplings

Applied Energy 236 (2019) 622-634

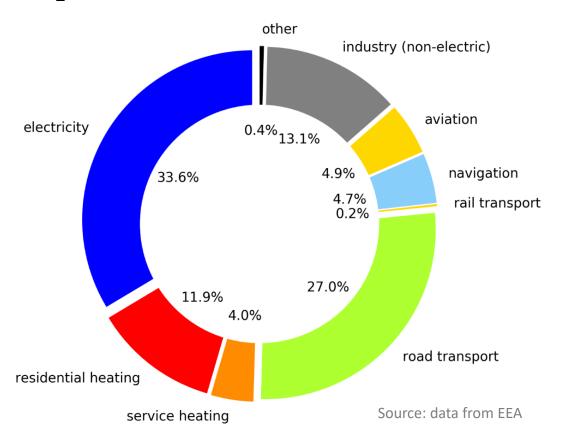
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Impact of CO₂ prices on the design of a highly decarbonised coupled electricity and heating system in Europe

K. Zhu^{a,*}, M. Victoria^a, T. Brown^b, G.B. Andresen^a, M. Greiner^a



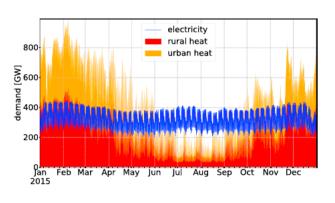
^a Department of Engineering, Aarhus University, 8000 Aarhus C, Denmark

b Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Forschungszentrum 449, 76344, Eggenstein-Leopoldshafen, Germany

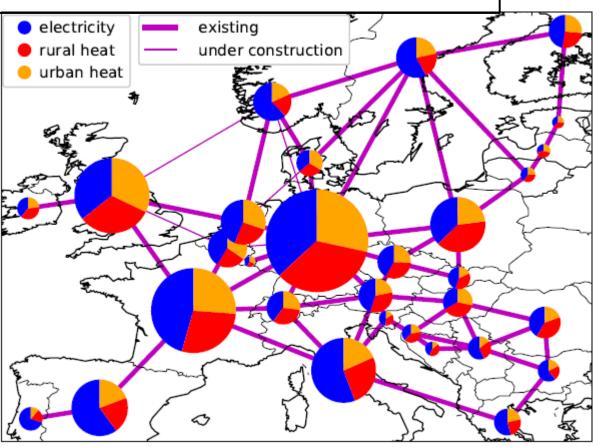
Motivation

CO₂ emissions European Union 2015

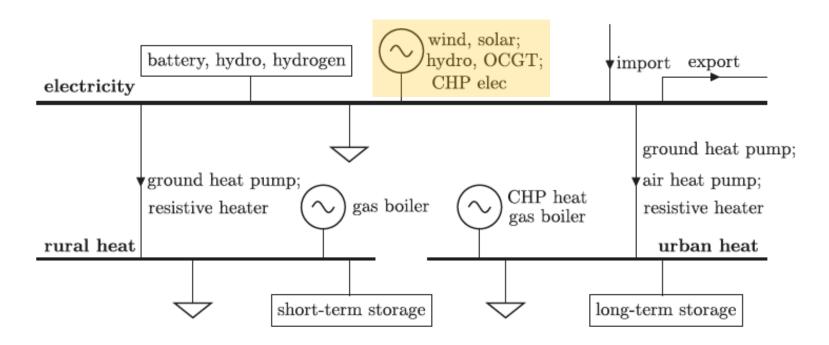
EU CO₂ emissions 2020 -20% 2030 -40% -80% / -95% 2050


Question:

Is Installing Large Renewable Capacities Enough to Decarbonize the Coupled Electricity-and-Heating System in Europe?

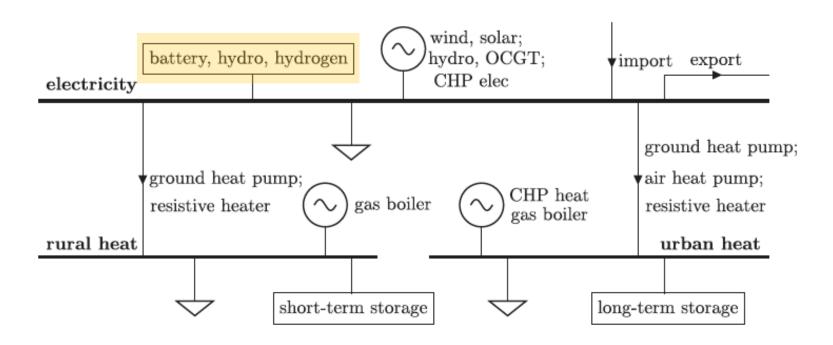

simplified cross-sector network model

capture / extract general system dynamics

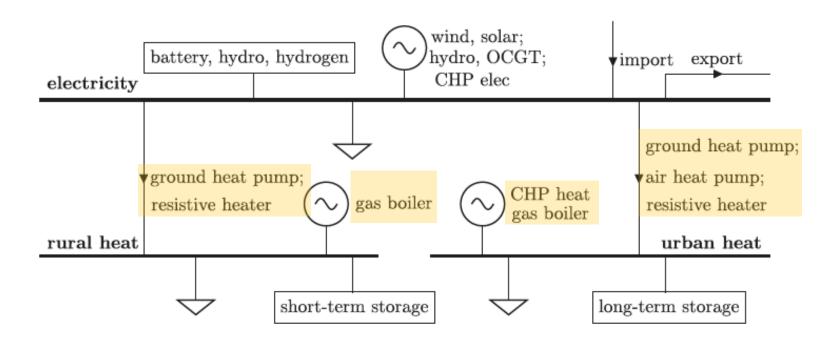

- + meaningful insights
- + inspirational results

2015: 2854 TWh_{el}, 3562 TWh_{th}

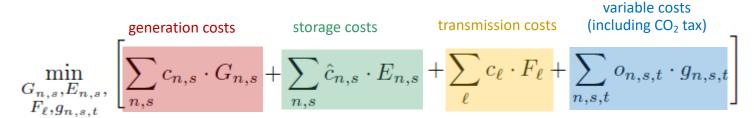
"Smart energy" flow diagram of one country



"Smart energy" flow diagram of one country



"Smart energy" flow diagram of one country



Technology	Overnight Cost[€]	Unit	FOM ^a [%/a]	Lifetime [a]	CF ^b / Efficiency	LCOE ^b [€/MWh]
Onshore wind ^c	910	$\mathrm{kW_{el}}$	3.3	30	0.23[0.07 - 0.33]	52[35-224]
Offshore wind ^c	2506	$\mathrm{kW_{el}}$	3	25	0.31[0.09 - 0.51]	91[66-182]
Solar PV ^c	575	$\mathrm{kW_{el}}$	2.5	25	0.13[0.06 - 0.19]	55[39-114]
$OCGT^d$	560	$\mathrm{kW_{el}}$	3.3	25	0.39	63
CHP ^d	600	$\mathrm{kW_{th}}$	3.0	25	0.47	54
Gas boiler ^{d,e}	63/175	$\mathrm{kW_{th}}$	1.5	20	0.9	25/26
Resistive heater	100	$\mathrm{kW_{th}}$	2	20	0.9	-
Heat pump ^e	1400/933	$\mathrm{kW_{th}}$	3.5	20	[3.03-3.79]/[2.73-3.04]	-
Battery storage ^f	144.6	kWh	0	15	1.0	-
Hydrogen storage ^f	8.4	kWh	0	20	1	-
Hot water tank ^{e,f}	860/30	m^3	1	20/40	$\tau = 3/180 \text{ days}$	-
HVDC lines	400	MWkm	2	40	1	-

Economic optimization:

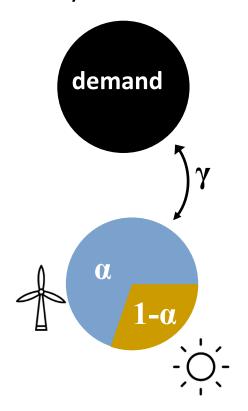
Subject to constraints:

$$\sum_{s} g_{n,s,t} + \sum_{\ell} \alpha_{n,\ell,t} \cdot f_{\ell,t} = d_{n,t} \quad \leftrightarrow \quad \lambda_{n,t} \quad \forall n, t$$

$$\underline{f}_{\ell,t} \cdot F_{\ell} \le f_{\ell,t} \le \overline{f}_{\ell,t} \cdot F_{\ell} \qquad \forall \ell, t$$

Supply hourly inelastic demand

Maximum power flowing through the links

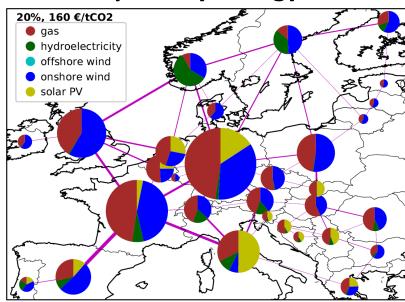


Renewable generation proportional to demand in every country

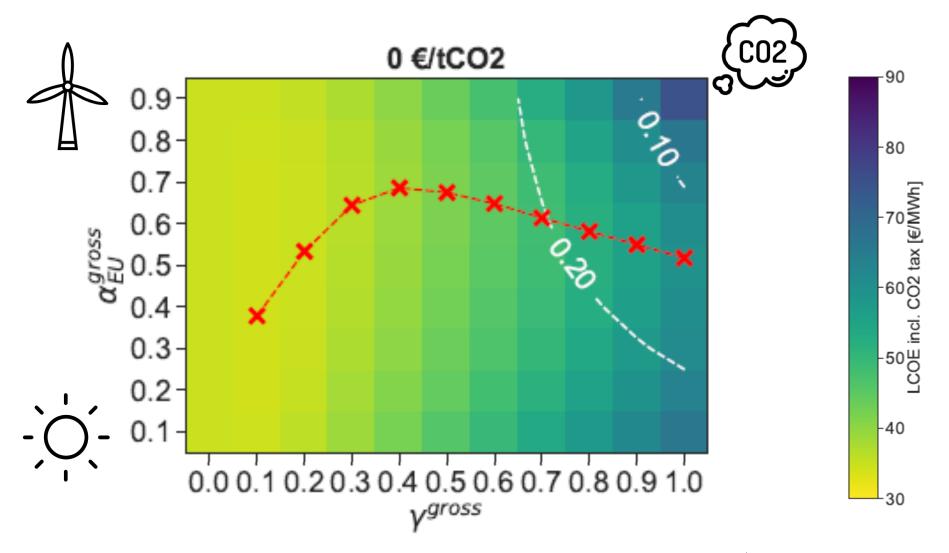
$$g_{i,VRES}^{gross} = \gamma_i^{gross} \sum_{t,n \in i} d_{n,t}$$

Wind solar mix optimized for every country

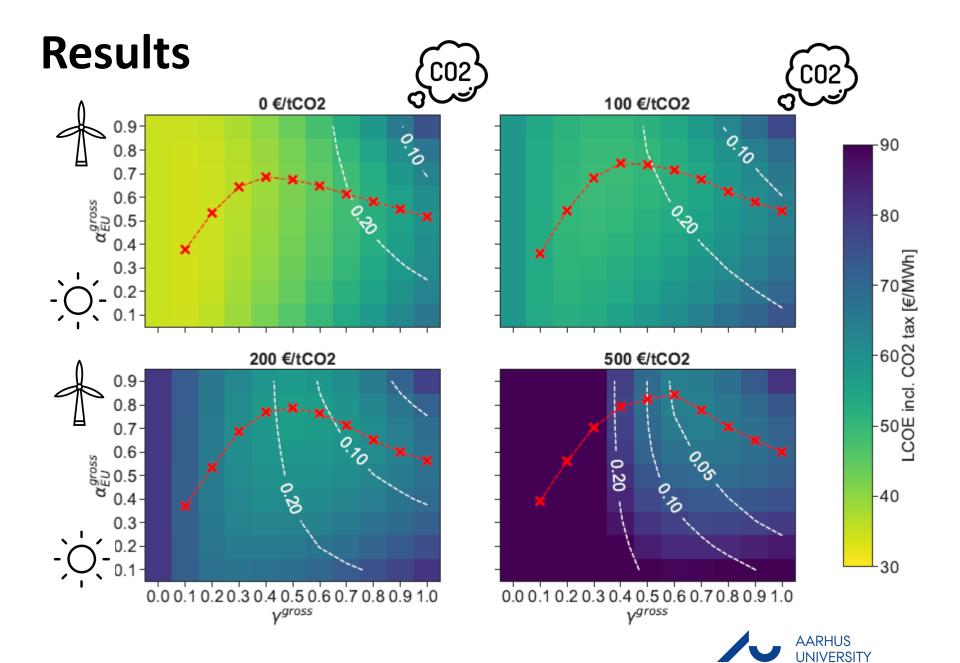
$$g_{i,W}^{gross} = \alpha_i^{gross} g_{i,VRES}^{gross}$$

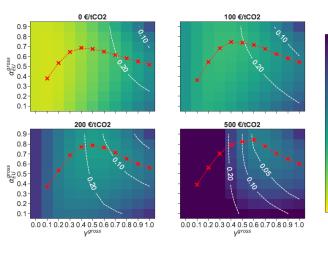


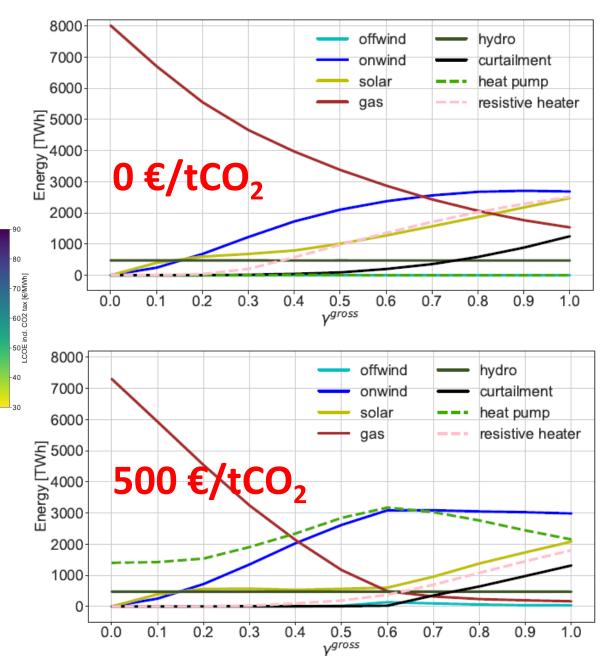
We fix the renewable penetration and the level of CO₂ tax ...

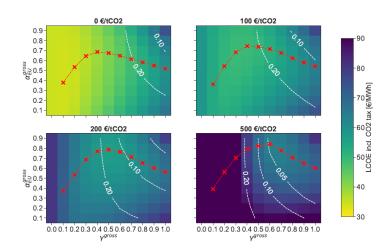

... and let the math decide the cost-optimal composition of energy generation, conversion, transmission and storage technologies

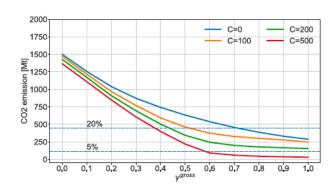
Then, we calculate CO₂ emissions

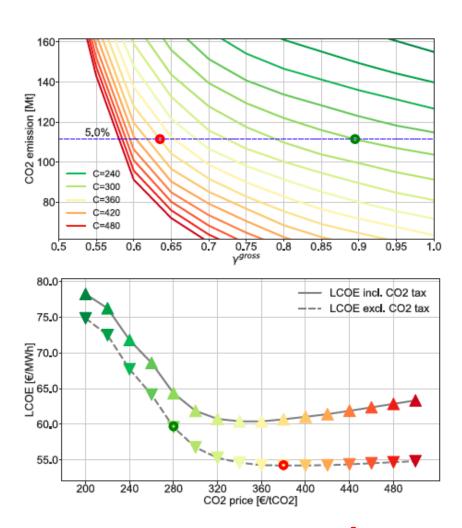

primary energy

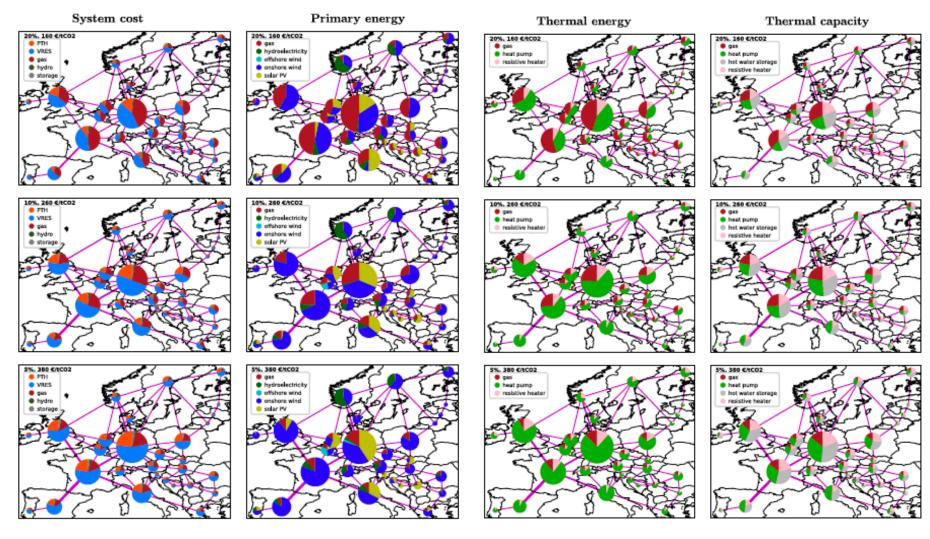









DEPARTMENT OF ENGINEERING



380 €/tCO₂

Transmission volume ^b	Optimal volume			Todays volume		
Emission level	20%	10%	5%	20%	10%	5%
CO ₂ price	160	260	380	200	320	580
Gross penetration	0.46	0.57	0.64	0.5	0.64	0.7
Gross wind/solar	0.77	0.8	0.8	0.73	0.74	0.79
System cost incl. CO ₂ tax	348	378	397	380	417	456
System cost excl. CO ₂ tax	277	320	355	291	346	391
LCOE incl. CO ₂ tax	54.3	58.9	61.9	59.2	64.9	71.1
LCOE excl. CO_2 tax	43.2	49.8	55.4	45.4	53.9	60.9
Onshore wind	1,090	1,406	1,567	1,126	1,428	1,591
Offshore wind	0	10	21	5	33	88
Solar PV	542	616	719	703	902	812
Resistive heater	307	389	464	434	581	673
Heat pump	69	113	148	67	103	143
Gas boiler	567	469	332	512	399	300
OCGT	0	0	0	17	1	0
CHP	363	243	165	464	336	268
Battery storage	9	10	0	145	180	143
Hydrogen storage	0	0	0	0	0	0
Hot water tank	7,768	27,823	91,796	17,232	57,818	156,753
Transmission volume	141	176	196	32	32	32

Summary

Is Installing Large Renewable Capacities Enough to Decarbonize the Coupled Electricity-and-Heating System in Europe?

No! ... CO₂ tax is required to

- incentivize an efficient + highly decarbonized electricity-heating system
- avoid renewable curtailment, combustion of fossil fuel, and inefficient technologies
- incentivize efficient technologies such as heat pumps

Next steps

- biomass + heat savings
- more sectors: transportation, industry, ...
- large → small scale modelling
- transition pathways 2020 → 2050
- impact of climate change
- quantitative tech+econ+soc+pol consulting

"Energiewende": kickoff to the second half

2015

ENERGINET DK

DONG

EMD International A/S

Statkraft

AALHORGES

O DANSK FJERNVARME HALDOR TOPSOE T

liquids

Danmarks Innovations fond Grand Solutions (04.2017-03.2022, 2.3 M€)

RE-Invest

Renewable Energy Investment Strategies

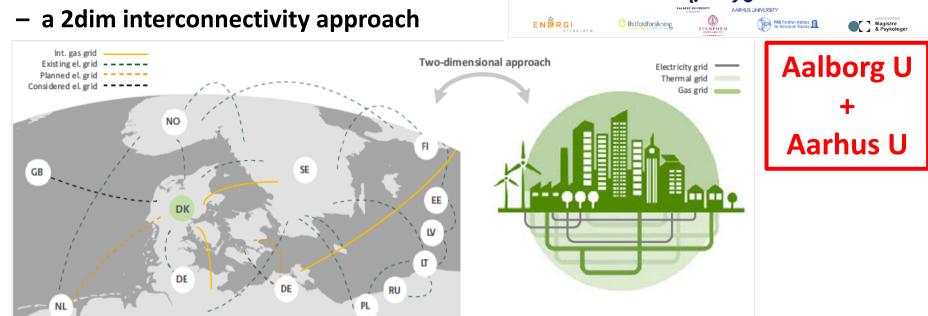


Figure 1. RE-Invest will combine the Smart Energy Systems cross-sectoral approach (right side) at Aalborg University with the cross-border approach (left side) and tools developed by Aarhus University at the European scale. This will lead to a **novel two-dimensional interconnectivity approach** for the design of robust and cost-effective investment strategies towards a sustainable energy system.

AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING

2050

Energy

System

Statkraft

DANSK

ENERGINET DI

AALBORG CS

HALDOR TOPSØE

kamstrup

More papers

T Brown, D Schlachtberger, A Kies, S Schramm, M Greiner:

Synergies of sector coupling and transmission extension in a cost-optimized highly renewable European energy system, **Energy 160 (2018) 720-39.**

T Brown, M Schäfer, M Greiner:

System properties of a sector-coupled, highly-renewable model of the European energy system as carbon dioxide emissions are restricted,

Energies (2019) in press.

D Schlachtberger, T Brown, S Schramm, M Greiner:

The benefits of cooperation in a highly renewable European electricity network, **Energy 134 (2017) 469-81.**

D Schlachtberger, T Brown, M Schäfer, S Schramm, M Greiner:

Cost optimal scenarios of a future highly renewable European electricity system: exploring the influence of weather data, cost parameters and policy constraints,

Energy 163 (2017) 100-14.

M Schlott, A Kies, T Brown, S Schramm, M Greiner:

The impact of climate change on a cost-optimal highly renewable European electricity network, **Applied Energy 230 (2018) 1645-59.**

open energy modelling initiative

We are hosting the next Open Energy Modelling Workshop!!!

Aarhus University 22-24th May 2019

https://en.wikipedia.org/wiki/Open Energy Modelling Initiative#Workshops

