

Floating offshore wind – A state of the art review

Rostock | 83rd Annual Meeting of the DPG and DPG-Frühjahrstagung | 13rd of March 2019

Dr.-Ing. Frank Adam

18.03.2019

@ 2019 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

Dr.-Ing. Frank ADAM (married, 3 children)

- 2009 Diploma at the excellent Technical University of Dresden
- 2015 PhD (summa cum laude) at the Technical University Bergakademie Freiberg (Topic: System dynamic of floating offshore wind)
- Since 2015 group leader offshore wind at the University of Rostock
- Since 2015 head of R&D offshore wind division at the GICON – Großmann Ingenieur Consult GmbH
- Reviewer for several Journals within the field of Renewable Energy
- Member of: ISSC V.4 committee (2015/2018), IEC61400-3-2 standard committee, ISOPE and ReNew conference technical committee

Publications:

Content of the presentation

- Motivation
- Introduction & wording
- State of the Art: Selected examples
- Current research and development topics
 - scaling effects for combined wind and wave tests
 - servo-hydro-aero-elastic coupled calculation

Conclusion

© NREL

Motivation

MOTIVATION - Floating offshore wind vision

© DNV-GL

Motivation - LCOE

Motivation - Bathymetry north sea

Introduction & wording

Introduction - Definition

Introduction -Substructures

		· · · · · · · · · · · · · · · · · · ·
	Fixed	Floating
Water depth	0 – 50 m Design depending on the water depth	50 – x m Design independent from the water depth
Installation	Hugh and expensive transport & installation vessels needed	Transport & installation with the wind turbine on top; only small tug boats needed
Certification	Each support-structure need it's own certification	Type certification is possible
Costs	Cost competitive for specific boundary conditions (water depth, distance to shore)	On the way to be cost competitive
Environmental impact	Noisy pile driving, decommissioning issues	No pile driving and nearly fully decommission

Introduction - Kind of floating solutions

18.03.2019 © 2019 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

Introduction - Floating stability

Introduction - Floating solutions pilot plants

State of the Art: Selected examples

- WindFloat
- Hywind
- IDEOL

Principle Powers's buoyancy stabilized system

- Steel structure
- 2011 2015 operated in Portugal | 2.0MW

Traditio et Innovatio

- Since 2018 under operation in Scotland | 2.0MW
- Buoyancy stabilized system
- Active ballasting system by pumping water into the buoyancy bodies
- Drag anchors (pre installed)
- Heave plates to damp the motion

Statoils's gravity stabilized system

- Steel structure
- Since 2009 under operation in Norway | 2.3MW
- Since 2018 under operation in Scotland 5 x 6.0MW
- Gravity stabilized system
- Semi-Active water ballasting system
- Drag anchors (pre installed)
- Pitch controller to damp the motion via aero-dynamic damping

IDEOL's Powers's buoyancy stabilized system

- Concrete / Steel structure
- Since 2018 under operation in France | 2.0MW

Traditio et Innovatio

- Since 2018 under operation in Japan | 3.0MW (two blade system)
- Buoyancy stabilized system
- Semi-Active system by using the damping-pool
- Drag anchors (pre installed)
- Heave plates to damp the motion

Current research and development topics

- scaling effects for combined wind and wave tests
- servo-hydro-aero-elastic coupled calculation

Thrust Force F_T

According to Blade-Element-Momentum-Theory (BEMT):

$$F_{T} = F_{L} \cdot cos(\alpha) + F_{D} \cdot sin(\alpha)$$

$$F_{L} = 0.5 \cdot c_{L}(Re, \alpha) \cdot \rho \cdot c \cdot v_{rel}^{2}$$

$$F_{D} = 0.5 \cdot c_{D}(Re, \alpha) \cdot \rho \cdot c \cdot v_{rel}^{2}$$

- Fixed Parameters: Air density ρ , Wind speed v_{rel}
- Design Parameters: Chord length c, Aerodynamic Coefficients c_L , c_D , Angle of Attack α

- F_L . . . Lift force F_D . . . Drag Force
- $c_L \ldots$ Lift coefficient $c_D \ldots$ Drag coefficient ρ ... Air density c ... Chord length
 - α . . . Angle of Attack Re . . . Reynolds number v_{rel} . . . Wind speed at blade element

Thrust Force F_T

• According to Blade-Element-Momentum-Theory (BEMT):

$$F_{T} = F_{L} \cdot cos(\alpha) + F_{D} \cdot sin(\alpha) \qquad (F_{T} = T)$$

$$F_{L} = 0.5 \cdot c_{L}(Re, \alpha) \cdot \rho \cdot c \cdot v_{rel}^{2} \qquad F_{D} = 0.5 \cdot c_{D}(Re, \alpha) \cdot \rho \cdot c \cdot v_{rel}^{2}$$

$$C_T = \frac{T}{\frac{1}{2}\rho AV^2} \qquad C_P = \frac{P}{\frac{1}{2}\rho AV^3}$$

Step 1: Increasing the chord length c

According to Blade-Element-Momentum-Theory (BEMT):

Scaling effects

Step 2: Adjusting lift and drag coefficients cL, cD

According to Blade-Element-Momentum-Theory (BEMT):

Traditio et Innovatio

Step 3: Adjusting Angle of Attack α

According to Blade-Element-Momentum-Theory (BEMT):

Step 3: Adjusting Angle of Attack α

According to Blade-Element-Momentum-Theory (BEMT):

7 mps

Servo-hydro-aero-elastic coupled calculation

Coupled calculation

Coupled calculation

Coupled calculation

Regular Waves

Conclusion

- Floating offshore wind could be the future in offshore wind
- R&D work needed within the field of coupled simulations
- R&D work needed within the field of scaled testing change the profile (define a own profile)

Prepared by:

Project TEAM Floating Offshore Foundation

University Rostock

Dr.-Ing. Frank Adam

Frank.Adam@uni-rostock.de Albert-Einstein-Str. 2 D-18059 Rostock Phone: +49 (0) 174 3236545

R&D work at the Chair with regard to floating wind

18.03.2019 © 2019 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

R&D work at the Chair with regard to floating wind

Gravity stabilized	Buoyancy stabilized	Mooring line stabilized
 Structural basis design Active controlled Spar- Buoy concept Transport and Installation process design etc. Reduce costs for fabrication via a structural optimization tool Tank tests & validation 	 Code comparison (OC5&OC6) Simulation Code Verification 	 Structural basis & detail design One-Step installation process Using composite materials Modularity design to get a flexible supply chain Reduce costs for fabrication via a structural optimization tool and flexible supply chain Tank tests & validation
- Design of inter arrow applaing for floating offshare wind forms		

- Design of inter array cableing for floating offshore wind farms
- Floating O&M platforms for offshore wind
- In collaboration with Windrad Engineering wind turbine design

