NO_x and other air pollutants in ambient air and in the indoor environment: sources and health effects

ERIAL UNDER COPYRIGI

T. Salthammer

Fraunhofer WKI

Department of Material Analysis and Indoor Chemistry

38108 Braunschweig, Germany

🗾 Fraunhofer

Catalytic cycle of atmospheric ozone formation in polluted air

Figure adapted from Hites et al. (2017) Umweltchemie, WILEY-VCH, Weinhim

NO₂ concentrations (1 h mean) in ambient air, measured in the greater area of Stuttgart, Germany

Measured NO₂ outdoor concentrations and calculated indoor concentrations for different scenarios

Sources and concentrations of indoor NO₂ in Hamburg and Erfurt (passive sampling!)

- (A) Indoor concentration of NO₂ originating from indoor and outdoor sources.
- (B) Simulated exposure concentration experienced by the two occupants assumed to not be near the cooking activity.
- (C) Simulated exposure concentration for the cook and a small child assumed to be near the cooking.

Statistical values (min, mean, max, median) of NO₂ in school and office environments

NO₂ decreases the formation of particles from terpene/ozone reactions

Wood burning fireplace - ultra-fine particle concentration (5.6 – 560 nm) over time

Wood burning fireplace - NO, NO₂ and NO_x concentration over time

Ethanol burning fireplaces – release of NO₂

NO₂ emission rates for different combinations of fuel and fragrance

- Reaction with antioxidant substances in the mucous membrane
 - Extrapulmonary effects
- Indications of a hypersensitivity of the bronchi from 2.9 mg/m³ (healthy adults).
- Deteriorated lung function with increased airway resistance was found predominantly from a NO₂ concentration of 3.8 mg/m³ (healthy adults).
- In the concentration range between 0.38 mg/m³ and 0.51 mg/m³, five out of eleven studies found a statistically significant relationship between short-term inhalation exposure to NO₂ and the increase in respiratory sensitivity in the subjects with asthma.
- In an epidemiological study with children aged 5–12 years with asthma, the preparation of food on a gas stove in the apartment led to a significantly more frequent use of asthma medication during a four-day measurement.

Composituation	David	Commont	Deferrence
Concentration	Period	Comment	Reference
0.25 mg/m ³ 0.08 mg/m ³	1 h mean 1 h mean	Health hazard guide value Precautionary guide value	AIR (2019) ^a AIR (2019) ^a
170 μg/m ³ 20 μg/m ³ 200 μg/m ³ 40 μg/m ³ 200 μg/m ³ 40 μg/m ³ 100 ppb ^c 53 ppb ^c 0.18 ppm ^c 0.030 ppm ^c 0.12 ppm ^c	Short term Long term Th mean Annual mean 1 h mean	INDER COPYRIG	Health Canada (2015) ^a Health Canada (2015) ^a WHO (2010) ^a WHO (2010) ^a EEA (2018) ^b EEA (2018) ^b US EPA (2018) ^b US EPA (2018) ^b CARB (2007) ^b CARB (2007) ^b Australia (2005) ^b
200 μg/m ³	1 h mean	Class 1 and Class 2	China (2012) ^b
 40 μg/m³ ^a Indoor air. ^b Ambient air. ^c 1 ppb (ppm) = 1.91 μg/m 	Annual mean $n^3 (mg/m^3) (P = 1013 \text{ mbar}, T = 29)$	Class 1 and Class 2	China (2012) ^b