

Highly Efficient Monolithic Tandem Solar Cells with Metal-Halide Perovskites

Prof. Dr. Steve Albrecht + many more

Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Center Berlin, Germany

Faculty IV - Electrical Engineering, Technical University Berlin, Germany

Virtual DPG Meeting "SKM21"

Sept. 27, 2021

Perovskite: Crystal Structure and History

Snaith et al., Energy Environ. Sci., 2014, 7, 982

Source: Web of Science Search in title "perovskite solar cell"

- First name "perovskite" appeared in 1840 by Gustav Rose for mineral CaTiO₃
- 2000 perovskites are currently known
- First "organic-inorganic" or "metal-halide" Perovskites by Dieter Weber in 1978
- First application in solar cells late 2008/09 with 3.8%, today over 25% efficiency

Zentrum Berlin

Metal Halide Perovskites

Snaith et al., Energy Environ. Sci., 2014, 7, 982

Methylammonium lead iodide "Triple cation"

 $\begin{array}{l} \mathsf{MAPbI}_{3} \\ \mathsf{FA}_{0.75}\mathsf{MA}_{0.2}\mathsf{Cs}_{0.05}\mathsf{Pb}[\mathsf{I}_{0.8}\mathsf{Br}_{0.2}]_{3} \end{array}$

Saliba et al., Energy Environ. Sci., 2016, 9, 1989

Organic-inorganic metal halide Perovskites

- Direct, bandgap ~1.55 eV for MAPbl₃
- tunable bandgap via composition
- Very few sub bandgap features
- High absorption \rightarrow thin layers <1 μ m required

Absorber	E g (eV)	α (cm ⁻¹)	Urbach energy (meV)
c-Si	1.1	10 ²	11
GaAs	1.4	104	7
CIGS	1.1	10 ³ -10 ⁴	25
CdTe	1.5	10 ³	10
MAPbl ₃	1.55	10 ³ -10 ⁵	15

Motivation for Tandems

• high loss from thermalization

- high energy photons are absorbed by perovskite
 - converted at a high voltage
 - reduced losses from thermalization
- infrared photons are transmitted into c-Si cover a wide spectral range of absorption

- Single junctions will be limited in efficiency
- Multi-junctions with perovskite top cells can overcome fundamental limitations

Jost et al., Advanced Energy Materials, 2020, DOI: 10.1002/aenm.201904102

- Main 2T achievements:
- 29.5% record in Dec. 2020
 - Higher than best Si single junction!
- After long time w/o results: Recently promising results 24.2% with Perovskite/CIGS tandems
 - Similar to best CIGS single junction!
- Improvements in Sn-based Perovskites enabled 24.2% Perovskite/Perovskite tandems

- 1. Results on Perovskite/Silicon Heterojunction (SHJ) Tandems
- 2. Results on Perovskite/CIGS Tandems
- 3. Towards all-Perovskite Tandems
- 4. Upscaling of Perovskite-based Tandems

Results on Perovskite/SHJ Tandems

How does a 2T-Tandem Solar Cell work?

In series connected tandem:

- 2 absorption events
- 2 electron-hole pairs
- Recombination layer needed

www.istockphoto.com

In series connected tandem:

- Voltages add up
- Current limited by limiting sub-cell
- Current matching needed

Further optimized monolithic tandem

- Perovskite band gap ~ 1.63 eV, Voc ~1.1V
- HTM for perovskite Top-cell was polymer PTAA
 - Limited Voc due to interface recombination and non-optimized band gap
 - Limited FF as well!

Köhnen et al., Sustainable Energy & Fuels, 2019,3,1995

Wavelength (nm)

1000 1100

• Close to 18% PCE in p-i-n perovskite solar cell

Magomedov, Al-Ashouri et al., Advanced Energy Materials, 2018,8,1801892

2nd Generation SAM Meo-2PACz, 2PACz

Al-Ashouri et al., Energy Environ. Sci., 2019, Advance Article DOI: 10.1039/C9EE02268F

Patents : DE 10 2018 115 379.1, PCT/EP2019/060586, DE 10 2019 116 851.1

loltz

Zentrum Berlin

MeO-2PACz

2PACz

- Terminated by
 S
 methoxy groups
 C
 - Simplest possible Carbazole SAM

2nd Generation SAM Meo-2PACz, 2PACz

าholtz **Zentrum Berlin**

New SAMs 2 and 3 with superior properties:

- Higher PL lifetimes and QFLS and Voc
 - SAM 3: higher than quartz glass (passivation)
- Perfect energetic alignment

Al-Ashouri et al., Energy Environ. Sci., 2019, Advance Article DOI: 10.1039/C9EE02268F

3rd Generation of SAM: Stable 1.68 eV Perovskite

Problem:

- Highest single cell efficiency with 1.5 eV
- For 1.7 eV compositions
 - > Limited photo-stability
 - > Phase segregation
 - > Non-optimized contacts

Jost et al., Adv. En. Mater., 2020, DOI: 10.1002/aenm.201904102

New SAM = Me-4PACz:

- Efficient passivation \rightarrow High QFLS \rightarrow High V_{oc}
- High photo-stability
 - > Reduced phase segregation

Al-Ashouri, Köhnen et al, Science (2020), DOI: 10.1126/science.abd4016

3rd Generation of SAM: Record Tandem

- Fine-tuning and stabilizing of Perovskite band gap to ~1.68 eV
- Enhanced hole extraction for higher FFs
- Slightly Perovskite limited in photocurrent
- Record 29.15% efficiency (>1 cm²)
- Promising stability data (300 h)

holtz

Zentrum Berlin

Results on Perovskite/CIGS Tandems

- So far <5 publications on monolithic pero/CIGSe tandems
 - > Rough CIGS surface induces problems with spin-coating of top cell
 - > Recently, polished TCO surface was implemented by UCLA and Solar Frontier [1]
- Here, we use conformal ALD layers of NiOx as hole contact [2]

- ALD NiOx prevents shorts on rough surface
- Partial coverage with PTAA enables improved Voc and FF
- 21.6% stabilized efficiency (0.8 cm² active area)

[1] Han et al., Science 2018, 361, 904

[2] Jost et al., ACS Energy Lett. 2019, 4, 2, 583

Zentrum Berlin

Record 2T Perovskite/CIGSe Tandem 2019

ΔZ

- 2nd Gen SAM integrated directly on top of rough CIGSe
- Optimized optics and SAM-improved Voc

Area	MPP	Jsc	Voc	FF
(cm²)	(%)	(mA/cm²)	(V)	(%)
1.035	23.26	19.17	1.68	72

Al-Ashouri et al., Energy Environ. Sci., 2019, Advance Article DOI: 10.1039/C9EE02268F

SAM

- 3rd Gen SAM integrated directly on top of rough CIGSe
- Optimized perovskite band gap higher Voc

Area	MPP	Jsc	Voc	FF
(cm²)	(%)	(mA/cm²)	(V)	(%)
1.045	24.16	18.8	1.77	72

Jost et al, manuscript in prep.

Helmholtz Zentrum Berlin

Zentrum Berlin

Pero/CIGS is stable under proton dose

of >50 years at the ISS orbit!

Lang, et al., Joule, (2020),5, 1054

Lang et al., Advanced Materials (2016), 28, 8726

Towards all-Perovskite Tandems

- New additive for Sn-Pb perovskites
- improved lifetime, PL yield and Voc
- Up to 20% with a band-gap of 1.25 eV

Fengjiu Yang, in preparation

- Progress of all-perovskite monolithic tandem solar cells
- Depends on low band gap Sn-Pb bottom cell

What we learn:

 Perovskite-based tandem solar cells with Silicon, CIGS or perovskite bottom cells have 32-24% efficiency potential

Yang and Albrecht et al., APL Materials submitted

Upscaling of Perovskite Solar Cells

Direct Co-Evaporation of Perovskite

New concept:

- thermal management system:
 - actively cooled and heated surfaces
- trapping of volatile MAI on cooled surfaces:
 - no re-evaporation from chamber walls
 - direct co-evaporation

Roß et al., ACS Appl. Mater. Interfaces 2020, 12, 35, 39261–39272

Fully textured co-evaporated pero/Si tandems

- High stability MAFAPbl₃ perovskite composition
- High robustness against top contact processing
- First demonstration of fully textured perovskite/silicon tandems from co-evaporation

Roß et al., 2021, submitted

Large area Perovskite/Silicon Tandem

Proof-of-concept large area Perovskite/Si tandem:

- 60 cm² active area
- Perovskite absorber fully evaporated
- Front contact screen-printed at low temp.
- 21% PCE including shadowing losses

Köhnen and Roß, EUPVSEC-2020

New Perovskite Cluster Tool "KOALA"

- Designed for 6" perovskitebased tandem solar cells
- Focus on vacuum deposition
 - Co-evaporation
 - Sputter deposition
 - ALD
- Baseline integration + industry collaboration
- Planned operation: 2021

37

- Perovskite-based tandem solar cells: promising for next generation modules
- New versatile hole transporting SAMs
 - High passivation, selectivity and fast extraction
 - Stabilizing the 1.68 eV band gap
 - Record certified 24.16% 2T Pero/CIGS tandem
 - Record certified 29.15% 2T Pero/Si tandem
- Upscaling of perovskite via printing and thermal evaporation
 - Promising tandem results with scalable methods
 - First proof-of-concept on textured Si
 - 60 cm² perovskite/silicon tandem with 21%
 - New cluster tool for 6" perovskite-based tandems

2020

Funding provided by:

Federal Ministry of Education and Research

Mesa-ZUMA, PEROWIN

Federal Ministry for Economic Affairs and Energy

PersiST, P³T, Presto, PeroQ

HELMHOLTZ ASSOCIATION

HySPRINT, PeroSeed, TAPAS

WromB

Dieter Neher Christian Wolff Martin Stolterfoht Pietro Caprioglio

Marko Topic Janez Krc

Marko Jost

Lidon Gil-Escrig

Henk Bolink

Eike Köhnen Amran Al-Ashouri Marcel Ross Lars Korte Philipp Tockhorn **Philipp Wagner** Anna Belen Morales Bernd Stannowski Rutger Schlatmann **Tobias Bertram** Christian Kaufmann Iver Lauermann Thomas Unold José Márquez Prieto Hannes Hempel Klaus Jäger **Christiane Becker** Bernd Rech

Tadas Malinauskas Vytautas Getautis

Artiom Magomedov

BERGISCHE UNIVERSITÄT WUPPERTAL

Thomas Riedl Kai Brinkmann

TU/e

Bart Macco

Dibyashree Koushik Mariadriana Creatore

Thank you for your attention!

@AlbrechtLab
steve.albrecht@helmholtz-berlin.de