Geothermal Energy: Risks and benefits of utilizing hot fluids from the deep underground

Hannes Hofmann, Simona Regenspurg, Ernst Huenges

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section 4.8 Geoenergy

DPG, 28 September 2021

Overview

1) Background on geothermal energy

2) Risks of geothermal fluids: scaling and corrosion

3) Benefits of geothermal fluids: exploration and raw material mining

4) Example: Geothermal research site Groß Schönebeck

Energy transition requires heat transition

Grand challenges:

- Climate change
- Energy transition

Heat market ~ 2x electricity market

Geothermal – the sleeping giant

- Huge potential
- Local baseload energy
- Low greenhouse gas emissions

Geothermal energy systems

Hot spring: fluid reservoir is connected by faults and fractures to the surface

Geothermal plant: fluid reservoir is connected by wells to the surface

Geothermal fluid

- Transported in the the pores and fractures of the geothermal reservoir
- Heat carrier for energy supply
- Gas and liquid phase of high pressure and temperature
- Often very saline with many chemical components

Bundesverband Geothermie Geothermal reservoirs Albrechlatz 22 10117 Gerlin Tel:+49.(\$50.20195 43.50 G-Mall:Info@gesthermin.de www.geothermie.de in Germany Hydrothermal Petrothermal Pores Karst Fractures

www.geothermie.de

Risks: Chemical reactions during geothermal activities

Scaling

Heat exchanger: strong T- decrease

HELMHOLTZ

Scale formation depends on:

- Temperature
- Pressure

- change during fluidproduction and re-injection
- Chemical components
- Concentrations
- pH- and Eh
- Interaction with surrounding material (rock or power plant)
- Kinetics of crystal formation
- Crystal seed (surface, microorganisms)

Scaling in the reservoir

Precipitation in pores and fractures of the rock decrease permeability (reservoir damage)

→ Reduced injectivity and productivity

Sandstone sample before and after a flow-through experiment

SEM picture: pores intact

SEM picture: clogged pores

Blöcher et al., 2017. Hydraulic history and curent state of the deep geothermal reservoir Groß Schönebeck. Geothermics, 63, pp.27-43.

Remediation of scaling in the reservoir

Scaling: Silica (SiO₂)

Formation:

Precipitation due to temperature reduction

Examples:

High temperature fields in Indonesia, Iceland, New Zealand often in injection lines and wells

Prevention:

Add inhibitors, controlled precipitation in ponds or crystalizer tanks

PhreeqC calculated temperature dependent SiO₂ saturation indices (400 mg/L Si)

Scaling: Carbonates (CaCO₃)

Formation:

Precipitation due to degassing upon pressure release (shift of the carbonic acid equilibrium)

Examples:

Malm carbonates (Molasse Basin); Volcanic gas-rich reservoirs: Soultz (France), Landau (Germany)

Prevention:

Maintain pressure above bubble point (avoid CO_2 degassing), add inhibitors to keep Ca in solution, add acid...

Dissolution of CO_2 in water: $H_2O + CO_2 \rightarrow H_2CO_3 \rightarrow HCO_3^- + H^+$ Dissolution of calcite: $H_2O + CO_2 + CaCO_3 \rightarrow 2HCO_3^- + Ca^{2+}$ Degassing \rightarrow Shift of the equilibrium: $H_2O (+ CO_2) + CaCO_3 \rightleftharpoons HCO_3^- + Ca^{2+} + OH$

Scaling: Copper (Cu), Magnetite (Fe₃O₄)

Formation:

Electrochemical reaction, e.g. with the cabon steel casing

Example:

Groß Schönebeck Combined corrosion and scaling reaction

Prevention:

Deploy alternative materials (e.g., composite or cladded casings)

Corrosion: Casing

Formation

Corrosion is a process, which converts a refined metal to a more chemicallystable form, such as its oxide, hydroxide, or sulfide \rightarrow gradual destruction of materials (usually metals) by chemical and/or electrochemical reaction with their environment.

Example

The total annual cost of corrosion in the oil and gas production industry is estimated to be \$1.372 billion*

Prevention

Fluid-specific material selection, new casing materials, new coating materials, avoid O_2 , remove H_2S

HELMHOLTZ

*Oil and Gas "Rust": An Evil Worse Than Depletion May 2008 Offshore Technology Conference (OTC) Presentation Matthew R. Simmons, Chairman Emeritus

Benefit: Geothermal resource exploration

Example

SiO₂ Geothermometer

The clear dependency of SiO_2 solubility from temperature can be used to calculate the reservoir temperature of the geothermal fluid

Benefit: Co-production of resources

Traditional raw material extraction (Mining)

Example Lithium

Raw material extraction from thermal water

→ Environmental damage → Large CO_2 release

→ Low land use, no chemicals, no mining waste → Almost no CO₂ release

Paranthaman, et al., 2017. Recovery of lithium from geothermal brine with lithium– aluminum layered double hydroxide chloride sorbents. Environmental science & **HELMHOLTZ** technology, 51(22), pp.13481-13486.

"Lithium Rush" from thermal water

- Germany: Upper Rhine Valley (Geothermal plants Insheim, Bruchsal)→ Vulcan Energy Resources Ltd. + Pfalzwerke Geofuture GmbH; EnBW
- United Kingdom: Cornish Lithium
 + Geothermal Engineering Limited
- California, USA: Salton Sea

Ionexchange process: Pilot-scale lithium extraction system (Lilac, Oakland)

Geothermal research site Groß Schönebeck: History

- 2001-2003: Re-opening of gas exploration well GrSk 3/90
 - Deepening of GrSk 3
 - Stimulation of GrSk 3
- 2006-2007: Drilling of well GrSk 4/05
 - Stimulation of GrSk 4
- 2011-2013: Hydraulic tests
 - Stable injectivity
 - Productivity decline
- 2016-2019: Preparation of fracture dominated site development concept

HELMHOLTZ

- 3D Seismics

Geothermal research site Groß Schönebeck: Productivity decline

Blöcher et al., 2017. Hydraulic history and curent state of the deep geothermal reservoir Groß Schönebeck. Geothermics, 63, pp.27-43.

Geothermal research site Groß Schönebeck: Countermeasures

Process	Counter actions
Sedimentation of Baryt in borehole	Use of commercial inhibitors
Copper scaling clogging near wellbore area	Use of cladded pipes to avoid electrochemical reactionExtraction of copper at the surface
Damage of induced fractures due to excessive pressure reduction	Analysis of fracture sustainability in laboratoryLess pressure reduction during production
Two-phase flow due to degassing reduces relative permeability of water	 Modelling shows no relevant influence Free gas was not confirmed Less pressure reduction during production
Limited reservoir volume due to impermeable faults	 3D Seismics showed no indication of impermeable faults

Blöcher et al., 2017. Hydraulic history and curent state of the deep geothermal reservoir Groß Schönebeck. Geothermics, 63, pp.27-43.

Geothermal research site Groß Schönebeck: Resource extraction potential

Geothermal research site Groß Schönebeck: Resource extraction potential

Geothermal research site Groß Schönebeck: Resource extraction potential

Future of Groß Schönebeck: Fracture-dominated system for electricity, heat and metal extraction

Risks and benefits of utilizing deep fluids Reservoir **Risk:** engineering clogging Operation/ of pores installations Raw material mining **Risk: Benefit Benefit** additional corrosion energy value & scaling **Benefit** prediction Exploration