SKM DPG Conference, 28. September 2021

Einsatz bildgebender Messverfahren und numerischer Modellierungswerkzeuge für die Verbesserung der Energieeffizienz industrieller Mehrphasenprozesse

U. Hampel

Institute of Fluid Dynamics I www.hzdr.de

Energy Consumption in Different Sectors

Energy Intensive Chemicals

Chemical Processes – Unit Operations

Chemical Processes – Unit Operations

The World of Multiphase Thermal Fluid Mechanics

Continuity equation

 $\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{u} = 0$

Momentum equation

$$\rho\left[\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla \boldsymbol{u})\right] = -\nabla p + \mu \Delta \boldsymbol{u} + f$$

Energy equation

$$\rho c_p \left[\frac{\partial T(\boldsymbol{r},t)}{\partial t} + (\boldsymbol{u}(\boldsymbol{r},t) \cdot \nabla T(\boldsymbol{r},t)) \right] = \lambda \Delta T(\boldsymbol{r},t) + q(\boldsymbol{r},t)$$

An Typical Setup for Multiphase CFD

Bubble forces (momentum exchange)

Lucas et al.; *Nucl. Eng. Des.*; **2016**

Velocity groups (MUSIG model)

Krepper et al.; Nucl. Eng. Des.; 2008 Ш

SST turbulence model and BIT

Ш Ma et al.; Phys. Rev. Fluids; 2017

Coalescence and breakup

Liao et al.; Chem. Eng. Sci.; 2015 Ш

ase CFI		
Bubble force	Model	
drag	lshii and Zuber (1979)	
lift	Tomiyama (2002)	
wall	Hosokawa (2002)	
turb. disp.	Burns (2004)	
virt. mass	$C_{v} = 1/2$	

$$C_1 = 0.184 \cdot \text{Re}^{0.229}$$
$$C_{\varepsilon B} = 0.3 \cdot C_D$$

choar

shear

(a) Turbulence

fluctuation

Multiphase flow analysis with wire-mesh sensors

- Temporal resolution up to 10.000 fps
- Pipe diameter up to 200 mm
- Mixture velocities up to 10 m/s
- Wire mesh up to 64 x 64
- Spatial resolution up to 2 mm

Multiphase flow analysis with computed tomography

Computed Tomography

Radiation power is exponentially attenuated along the beam:

$$I = I_0 exp\left(-\int_Q^D \mu(s)ds\right)$$

The measurand E is a line integral of the attenuation coefficient μ

$$\mathbf{E} = -\log\left(\frac{I}{I_0}\right) = \int_Q^D \mu(s) ds$$

Computed Tomography

Ultrafast X-ray Computed Tomography

Tomography means creeping around your object!

Can it be made fast enough to capture transient flow details?

1000 frames/second = 1000 revolutions/second !

Ultrafast X-ray Computed Tomography

Member of the Helmholtz Association www.hzdr.de

Fischer (2008)

Ultrafast X-ray Computed Tomography

 \varnothing 50 mm, 1000 fps

An application example

Obtaining the bubble size distribution

Obtaining the liquid velocity profile

An advanced reactor model

Thank you for your attention

