Advanced plasma-facing materials for fusion: Developments and perspectives

2021-09-28 I Ch. Linsmeier

J.W. Coenen, M. Bram, J. Engels, H. Greuner*, A. Houben, F. Klein, A. Litnovsky, Y. Mao,

G. Pintsuk, M. Rasinski, J. Riesch*, J. Schmitz, X. Tan, T. Wegener

* Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany

Outline

Introduction: the challenge for materials facing the plasma

Research tailored towards new materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers
- Irradiation damage: >15 MeV protons as fusion neutron proxy

Summary and outlook

ITER divertor

Full-W armor: one divertor until 4 years into DD/DT phase

- fully actively cooled (water, 70 °C)
- dome: flat tiles
- vertical targets (2,000): monoblocks (320,000)
- themal performance up to 20 MW m⁻² steady-state

Mono-block technology: JA-DA, EU-DA

From ITER to DEMO

ITER

- operational flexibility (experimental device)
- transient heat flux events
- T-codeposition on "cold" surfaces
- no energy conversion (70°C water coolant)
- low duty cycle
- low neutron dose (wall: ~1 dpa)

Need to apply available materials and technology

DEMO

- lifetime (erosion, ageing)
- very limited transient heat flux events
- energy conversion (coolant: ≥300°C water, ≥400°C He)
- high duty cycle
- high neutron dose (wall: 80...100 dpa, divertor: 2-5 dpa/fpy)
- low activation materials

Need for innovation in non-activating materials and technology

Baseline materials: Operational gap

Tungsten

- Operation mostly within brittle regime
- W→Re transmutation increases brittleness after irradiation

Cu alloy (heat sink, cooling tube)

- narrow optimum regime
- loss of strength above 300 °C

Advanced materials

New solutions for existing challenges

Methods and concepts applicable to new materials and components

Advanced materials

New solutions for existing challenges

Methods and concepts applicable to new materials and components

Research tailored towards fusion reactors

Research focus:

- material development definition preparation and characterization optimization
- PWI issues

 erosion
 hydrogen isotope retention
 lifetime

- neutron damage (simulation AND "real" neutrons)
- plasma exposure
- Off-normal events (e.g. ELM) simulation

Material and component testing at FZJ

- Integrated characterization of thermo-mechanical and physical-chemical properties of neutron irradiated and toxic plasma-facing materials under high heat loads and plasma exposure, incl. hot cell facilities
- Selection of plasma-facing materials tested under n-irradiation and optimized for PMI processes (tritium retention, embrittlement, erosion)

Forschungszentrum

Outline

Introduction: the challenge for materials facing the plasma

Research tailored towards new materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers
- Irradiation damage: >15 MeV protons as fusion neutron proxy

Summary and outlook

Metal Matrix Composites

Tungsten-fiber reinforced tungsten

- No stress redistribution

 → Catastrophic failure, no damage tolerance (notch sensitivity)
- High scatter \rightarrow weakest link scaling
- Limited fracture energy

- Stress redistribution by extrinsic mechanisms
- High fracture energy
- Cyclic loading possible after damage → damage tolerance

→ stress redistribution by local energy dissipation

Toughening by extrinsic mechanisms

- similar to ceramic fiber-reinforced
 ceramic composites
- to increase fracture toughness

Architecture

Fiber

- High strength/ductility, temperature stability
- commercial, drawn tungsten wire (Osram GmbH, Germany): (17-)150 µm

Interface

- Optimum bonding, stability
- e.g. oxide ceramic (yttria)

Matrix

- Interface/fibre integrity, fibre architecture, density
- Chemical vapour deposition (CVD-Wf / W)
- Powder metallurgy (PM-Wf / W)

Tungsten fiber reinforced tungsten (W_f/W)

CVD – W_f/W Pseudo-ductility at room temperature

Metal Matrix Composites allow for new operational windows for refractories

Stable crack growth

Porous matrix W_f / W by SPS

Controlled amount of fine scale matrix porosity obviates need for fiber coating

- Approach can be viewed as an extension of the porous coating concept
- Crack deflection occurs due to low fracture toughness of porous interphase

Compare to conventional W_f/W

- + No interface needed
 - easy to produce
- + Lower process temperature
 - less fiber recrystallization
- + More homogeneous material
 - no weak interface area
- Thermal conductivity reduced
- Retention?

Mechanical properties of porous matrix W_f/W

- improved AND tunable mechanical properties from 20-50 % fiber volume fraction
- strength loss above 50%: large voids and inhomogeneous densification (FAST)

Fracture toughness

High heat flux test: CVD and PM W_f / W

Small tiles brazed on actively cooled structure

Upscaling of the production

- Large dimension samples need to be produced
 - more accurate mechanical testing
 - mock-up production

Sample with 300 mm diameter and 12 mm thickness in processing - 16.32 kg W_f/W

Production upscaling

Large-scale FAST facility at U Hefei/China

Porous W_f/W , 105 mm x 30mm, ~89% density, 40% fibers

Outline

Introduction: the challenge for materials facing the plasma

Research tailored towards new materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers
- Irradiation damage: >15 MeV protons as fusion neutron proxy

Summary and outlook

Tungsten based smart alloys

Fusion accidents & oxidizing environments

Challenge:

mm

5

Suppress oxidation when utilizing refractories under oxidizing or accidental conditions. e.g. solar thermal power / fusion / furnace

Utilize Chromium and Yttrium to achieve stable oxidation suppression

1000°C, 1 bar, 80 vol.% Ar+20 vol.% O₂, 10 hours

Develop a passivating alloy for intrinsic safety and oxidation resistance

W and W alloys

incl. self-passivating tungsten

FAST production together with IEK-1 W-11.4wt%Cr-0.6wt%Y

1000°C, 1 bar, 80 vol.% Ar+20 vol.% O₂, 10 hours

Fundamental investigations using APT on Bulk Material

- Submicrometer WCr grains
- Y-rich nanoclusters

Protective oxide layer

Smart alloys under DEMO-relevant conditions

D steady-state plasma

- Ion energy: 120 eV
- **Smart Alloys and** pure W
- **Identical exposure** conditions

 $R = m_{allov}/m_W \sim 0.82$

Higher mass loss for pure W

0.82 1200 Smart Alloy 0.83 Pure W 1000 0.65 800 0.89 600-0.60 400 200

0

0

Mass loss, microgram

10 19 20 2 3 4 5 **DEMO** operation days

No additional loss of Cr, Y •

Industrial upscaling

- Sample size: 10 cm \times 10 cm $\times6$ mm
- Sample mass: 760 g
- Maximum sintering temperature: 1460°C
- Pressure: 50 MPa
- Temperature ramp: 200°C/min
- DC current

Parameters of laboratory scale sintering preserved in industrial upscaling

Minor technical corrections in sintering cycle needed

Further sintering planned

Outline

Introduction: the challenge for materials facing the plasma

Research tailored towards new materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers
- Irradiation damage: >15 MeV protons as fusion neutron proxy

Summary and outlook

Hydrogen isotope permeation

Hydrogen diffuses easily in metals – Important in various application fields

Fusion – Safety issue

- Radioactive inventory and material embrittlement
- Permeation of T₂ into coolant
- Consider impact of Tritium inventory on TBR
- ⇒ Reduction of permeation by a factor 50...100 necessary

Concentrated solar power

- Hydrogen from thermal decomposition of heat carrier
- Diffusion through glass into insulating vacuum
- \Rightarrow Efficiency reduction of plant

Alternative chemical energy carriers, Hydrogen system

- Thermochemical synthesis: syngas, water gas shift reaction (H₂, CO, CO₂, CH₄)
- Loss of H₂: reactors, power plants
- Transport and storage of hydrogen
- \Rightarrow Wide ranges of temperature and composition for $\rm H_2$ permeation

Comparison of deposition modes: Y₂O₃

- → Regime: Reacted Y_2O_3 : *J*~p^{0.75}, Hot metallic Y_2O_3 : *J*~ \sqrt{p} → diffusion limited
- \rightarrow The performance is strongly dependent on deposition mode:
 - \rightarrow Large differences in microstructure
 - \rightarrow The permeation reduction factor (PRF=J_{sub}/J_{barrier}) is different by two orders of magnitude

Improvement of microstructure \rightarrow Performance strongly enhanced!

Tungsten nitride

A new tritium permeation barrier ?

Deuterium permeation studies on Eurofer97 with different WN layers: - Comparison of different systems in order to understand the barrier effect

Polished Eurofer97 (Eu97):

- Reduced activation steel (DEMO)
- Martensitic/ferritic (~ 9% Cr, 0.1% C)
 Crystal structure: distorted bcc
- 'Mirror' polished
- Used as substrate

Eurofer97 with W layer (Eu97_W)

- Magnetron sputter deposition
- Layer thickness: 180 nm
- Cracks: different thermal expansion coefficients of Eu97 and W, left: after annealing, right: after measurement

Eurofer97 with WN layer (Eu97_WN)

- Reactive magnetron sputter deposition
- Layer thickness: 210 nm
- Smooth layer
- No cracks after measurement

Eurofer97 with WNW layer (Eu97_WNW):

- Thickness: WN: 170 nm, W: 220 nm
- Microstructure of W layer similar to Eu97_W sample
- No cracks after measurement

- WN and WNW layers are very suitable permeation barriers
- A thickness and substrate independent calculation of the layer permeation is possible
- D permeation through non-cracked W layers is nearly two orders of magnitude lower as through WN layer

Outline

Introduction: the challenge for materials facing the plasma

Research tailored towards new materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers
- Irradiation damage: >15 MeV protons as fusion neutron proxy

Summary and outlook

Radiation damage to fusion materials

Damage induced by fusion neutrons

- displacement damage (scattered and recoiled particles)
- transmutations (low-Z: H, He formation; high-Z: new elements)

BULK damage due to long range of neutrons matter (dimension: mm)

Path to materials for the realization of fusion energy

- ITER
- IFMIF DONES

time scales: 10 years and longer

Solution: fast protons as fusion neutron proxy

Radiation damage: comparison for tungsten

Description (for 1 dpa)	Heavy Ion Accelerators	Fission Reactor (HFIR)	Spallation Sources	30 MeV Protons	DEMO Reactor's First Wall
Maximum PKA energy	>> 1 MeV	40 – 150 keV		600 keV	300 keV
Required time	~ Hours	~ 1 year		2 days	3 months
Thickness / depth / range	1 -10 µm	200 μm, up to 4 mm	200 µm, up to 4 mm	500 µm	-
Hydrogen production	0	0.01 appm	1 appm (expected)	29 appm	1 appm
Helium production	0	0.01 appm	0.1 - 0.01 appm (expected)	7.2 appm	0.5 appm
Rhenium production	0	50,000 appm	300 - 500 appm (expected)	401 appm	700 appm
Remarks	No relevant transmutation	Thermal neutrons lead to biased damage	Spallation produces large number of transmutated products not actually produced in DEMO	Hot Material Laboratory Required	[Gilbert et al.]

СН

Forschungszentrum

Building a component

Advanced materials add operational space to conventional approaches

Now combine them ...

The next steps

- Integrate efforts towards new materials to components
- Understand neutron effects on materials in new test campaigns
- Build mock-ups and test components
- Test samples and components under systemic loading conditions:
 - linear plasma devices
 - confinement devices
- Integrate new concepts in DEMO design

Technology Readiness Level (TRL)

JÜLICH Forschungszentrum