Controlling wind-solar power in Germany

H. Lustfeld

March 15, 2022

Peter Grünberg Institut (PGI-1), Forschungszentrum Jülich, Germany, email: h.lustfeld@fz-juelich.de

DOI: https://doi.org/10.21203/rs.3.rs-1142831/v1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- electric power consumption in Germany \approx 60 GW_{el}
- but 80% power consumption are nonelectric, (energy for transportation, warm water, space heating and in part for process heating)
- ▶ therefore: 'Energiewende': $60 \text{ G} W_{el} \rightarrow 300 \text{ G} W_{el}$

Problem, needed: controlled wind-solar power generation of 60 GW_{el} {300 GW_{el} }.

database: power data over 7 years (2015 - 2021) from ENTSO-E

01.01.2021 00:00 - 01.01.2022 00:00 - CET					
Time	Germany (DE)				
	Day-ahead Total Load Forecast [MW]	Actual Total Load [MW]			
00:00 - 00:15	43567	45170			
00:15 - 00:30	43371	44835			
00:30 - 00:45	42884	44519			
00:45 - 01:00	42803	44265			
01:00 - 01:15	42096	43713			
01:15 - 01:30	41824	43157			
01:30 - 01:45	41426	42556			
01:45 - 02:00	41051	42326			
02:00 - 02:15	40781	41798			

	Solar	Wind Offshore	Wind Onshore	
MTU	Actual Aggregated	Actual Aggregated	Actual Aggregated	
	[MW]	[MW]	[MW]	
	D	D	D	
00:00 - 00:15	0	337	4232	
00:15 - 00:30	0	352	4098	
00:30 - 00:45	0	404	3819	
00:45 - 01:00	0	433	3723	
01:00 - 01:15	0	419	3771	
01:15 - 01:30	0	410	3689	
01:30 - 01:45	0	379	3559	
01:45 - 02:00	0	361	3439	
02:00 - 02:15	0	318	3372	

averaged power (GW) and scaling

year	2015	2016	2017	2018	2019	2020	2021
el. power demand \bar{P}_d	57.1	57.2	57.7	57.9	56.4	55.1	57.7
w-s volatile power $ar{\hat{P}}_{v}$	12.8	12.7	15.8	17.1	18.9	20.0	18.3

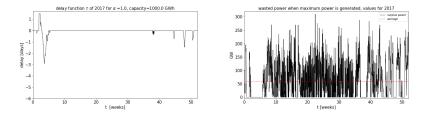
Scaling factor s_f required!

Scaling: s_f selected such that $\overline{\hat{P}}_v \cdot s_f = \overline{P}_v = \overline{P}_d$

• energy demand:
$$E_d(t) = \int_0^t P_d(t') dt'$$

• volatile energy generation: $E_v(t) = \int_0^t P_v(t') dt'$

• stored energy:
$$E_s(t) = \int_0^t P_s(t') dt'_s$$


Together, Ansatz: $\begin{bmatrix}
 E_d(t + \tau) + E_s(t) = (1 + \alpha) \cdot E_v(t) - E_{disc}(t)
 \end{bmatrix}$ with

• $\tau = \text{delay function, simulates smart meters}$

•
$$\alpha \cdot E_v(t)$$
 =surplus energy

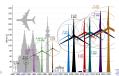
$E_d(t+\tau) + E_s(t) = (1+\alpha) \cdot E_v(t) - E_{disc}(t)$

Three characteristic numbers

- n_{λ} =range of smart meters: $n_{\lambda} = 4.4$ [days]
- n_{δ} =days out of prescribed range: n_{δ} = 6 [days]
- ▶ n_{σ} = days for which smart meters are active: n_{σ} = 36 [days]

Conclusion

based on i) precise (partly scaled) data over 7 years (2015-2021), ii) surplus of power, iii) smart meter and iv) characteristic numbers $(n_{\lambda}, n_{\delta}, n_{\sigma})$ our approach predicts:


- 1. Germany's present electric power demand of \approx 60GW can be supplied by wind-solar power alone.
- 2. Formidable volatility suppressed by storage capacity of 0.3TWh 1TWh.
- 3. \approx 100% surplus of wind-solar power devices required.

extrapolation to 300 GW case:

- formidable volatility suppressed by storage capacity of 1.5TWh 5TWh.
- II almost every roof and possibly a significant part of facades have to be covered with solar cells.
- 111 270 000 windturbines of type (6MW, 200m height)
 are required(area of Germany 360 000 km²)

