

Numerical simulation of the coating process for organic photovoltaics

Fabian Gumpert¹, Annika Janssen^{1,2}, Andreas Distler², Christoph J. Brabec², Hans-Joachim Egelhaaf², and Jan Lohbreier¹ ¹Technische Hochschule Nürnberg, Germany ²Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

OPV enables new application fields

http://summerschool.teiemt.gr

www.haustec.de

PV-Technologie	Rekordeffizienz Laborzelle ¹ (~mm²)	Rekordeffizienz Modul ² (>200 cm ²)	Diskrepanz (Zelle → Modul)
Monokristallines Silizium (mono-Si)	26,1 %	22,8 %	- 13 %
Polykristallines Silizium (poly-Si)	23,3 %	20,4 %	- 12 %
Amorphes Silizium (a-Si)	14,0 %	12,3 %	- 12 %
Cadmiumtellurid (CdTe)	22,1 %	19,5 %	- 12 %
Kupfer-Indium-Gallium-Selenid (CIGS)	23,4 %	19,8 %	- 15 %
Galliumarsenid (GaAs)	29,1 %	25,1 %	- 14 %
Perowskit-Solarzellen (PSC)	25,7 %	17,9 %	- 30 %
Organische Photovoltaik (OPV)	18,2 %	11,7 %	- 36 %

[1] https://www.nrel.gov/pv/cell-efficiency.html

[2] https://www.nrel.gov/pv/module-efficiency.html

\rightarrow Huge potential for OPV modules

What is doctor blading? (experimental setup)

Coating velocity *u*

2-step method to initialize the geometry

1. Step: Stationary study to model fluid-air interface

Experimental determination of contact angles Θ :

Applicator (stainless steel)

 $\Theta_{Sub} = 12.21^{\circ}$

Nuremberg Institute of Technology www.th-nuernberg.de

2-step method to initialize the geometry

2. Step: Supplement geometry to avoid topology changes

CFD model to investigate the wet film thickness

Computation time: 2 ½ minutes

DOF: 17k

(transient study)

Nuremberg Institute of Technology www.th-nuernberg.de

Position of applicator

At rest

Nuremberg Institute of Technology www.th-nuernberg.de

Comparison: simulation and experimental data

 \rightarrow Very good agreement of simulation and experimental data

Theoretical considerations

[3] L.D. Landau, V.G. Levich, Dragging of a liquid by a moving plate, Acta Physicochimica 17

\rightarrow Good agreement with theory

Conclusion

CFD simulation and experiment are in very good agreement

Outlook

- Start of joint project "AWESOME":
 - Modelling of further printing strategies (e.g. accelerated printing, spatial homogeneity of wet film thickness)
 - Consideration of world-record materials

Thank you for your attention!

Website: <u>www.th-nuernberg.de/cp4x</u>

Fabian Gumpert <u>fabian.gumpert@th-nuernberg.de</u>

Prof. Dr. Jan Lohbreier jan.lohbreier@th-nuernberg.de

Additional slides

Is laminar flow a valid approximation?

 $Re = \frac{\rho UL}{\mu}$

 $L \approx 6mm$ Re = 332 << 2000

