

On the theoretical framework to

manufacture OPV modules with

world record efficiency

18.03.2024

DPG Frühjahrstagung

Fabian Gumpert

Outline

Introduction Organic Photovoltaic, Module Efficiency, Blade Coating

Simulation | CFD Simulation, Empirical equation

Theory | Derivation of an analytical equation

Contribution to world record module | Accelerated blade coating

Summary

Organic Photovoltaics (OPV)

Fabian Gumpert, Computational Physics For Green Energy, Faculty of Applied Mathematics, Physics and Humanities, TH Nürnberg Ohm

Organic Photovoltaics (OPV)

Fabian Gumpert, Computational Physics For Green Energy, Faculty of Applied Mathematics, Physics and Humanities, TH Nürnberg Ohm

Module Efficiencies

[1] NREL, Champion Photovoltaic Module Efficiency Chart, https://www.nrel.gov/pv/module-efficiency.html (03.03.2024).

Ωhm

Blade coating

Gumpert et al.: "Predicting layer thicknesses by numerical simulation for meniscus-guided coating of organic photovoltaics", 2023, DOI: 10.1080/19942060.2023.2242455

Outline

Introduction | Organic Photovoltaic, Module Efficiency, Blade Coating

Simulation CFD Simulation, Empirical equation

Theory | Derivation of an analytical equation

Contribution to world record module | Accelerated blade coating

Summary

>> Good agreement between simulation and experiments

Fabian Gumpert, Computational Physics For Green Energy, Faculty of Applied Mathematics, Physics and Humanities, TH Nürnberg Ohm

Empirical description of the wet film:

 $h_{\rm fit}(u,V) = \left(b+c\cdot V\right) u^{2/3}$

Empirical description of the wet film:

 $h_{\rm fit}(u,V) = \left(b+c\cdot V\right) u^{2/3}$

Velocity profile:

$$u_{fit}(x) = \left[\frac{h_c}{b + \tilde{c}(\frac{V_0}{w} - h_c \cdot x)}\right]^{3/2}$$

Empirical description of the wet film:

 $h_{\rm fit}(u,V) = \left(b+c\cdot V\right) u^{2/3}$

Velocity profile:

$$u_{fit}(x) = \left[\frac{h_c}{b + \tilde{c}(\frac{V_0}{w} - h_c \cdot x)}\right]^{3/2}$$

>> Simple formula to predict h and to propose velocity profile for uniform coating

Outline

Introduction | Organic Photovoltaic, Module Efficiency, Blade Coating

Simulation | CFD Simulation, Empirical equation

Theory Derivation of an analytical equation

Contribution to world record module | Accelerated blade coating

Summary

Theoretical description:

$$h = 1.34 \cdot R \cdot Ca^{2/3}$$
 $Ca = \frac{\mu \cdot u}{\sigma}$

Theoretical description:

$$h = 1.34 \cdot R \cdot Ca^{2/3}$$
 $Ca = \frac{\mu \cdot u}{\sigma}$

Trapezoidal shaped applicator:

$$h_{\text{theo}}(u,V) = 0.95 \sqrt{\frac{\left[\frac{g^2}{\tan(\varphi)} + \frac{V}{w} - g \cdot l\right]}{\tan\left(\frac{\pi - \varphi}{2}\right) + \frac{\varphi - \pi}{2}}} \left(\frac{\mu \cdot u}{\sigma}\right)^{2/3}$$

Theoretical description:

$$h = 1.34 \cdot R \cdot Ca^{2/3}$$
 $Ca = \frac{\mu \cdot u}{\sigma}$

Trapezoidal shaped applicator:

$$h_{\text{theo}}(u,V) = 0.95 \sqrt{\frac{\left[\frac{g^2}{\tan(\varphi)} + \frac{V}{w} - g \cdot l\right]}{\tan\left(\frac{\pi - \varphi}{2}\right) + \frac{\varphi - \pi}{2}}} \left(\frac{\mu \cdot u}{\sigma}\right)^{2/3}$$

Velocity profile:

$$u_{\text{theo}}(x) = 1.08 \frac{\sigma}{\mu} \left\{ h_c \sqrt{\frac{\tan(\frac{\pi-\varphi}{2}) + \frac{\varphi-\pi}{2}}{\left[\frac{g^2}{\tan(\varphi)} + \frac{V_0}{w} - h_c \cdot x - g \cdot l\right]}} \right\}^{3/2}$$

Theoretical description:

$$h = 1.34 \cdot R \cdot Ca^{2/3}$$
 $Ca = \frac{\mu \cdot u}{\sigma}$

Trapezoidal shaped applicator:

$$h_{\text{theo}}(u,V) = 0.95 \sqrt{\frac{\left[\frac{g^2}{\tan(\varphi)} + \frac{V}{w} - g \cdot l\right]}{\tan(\frac{\pi-\varphi}{2}) + \frac{\varphi-\pi}{2}}} \left(\frac{\mu \cdot u}{\sigma}\right)^{2/3}$$

Velocity profile:

$$u_{\text{theo}}(x) = 1.08 \frac{\sigma}{\mu} \left\{ h_c \sqrt{\frac{\tan(\frac{\pi-\varphi}{2}) + \frac{\varphi-\pi}{2}}{\left[\frac{g^2}{\tan(\varphi)} + \frac{V_0}{w} - h_c \cdot x - g \cdot l\right]}} \right\}^{3/2}$$

Theoretical description:

$$h = 1.34 \cdot R \cdot Ca^{2/3}$$
 $Ca = \frac{\mu \cdot u}{\sigma}$

Trapezoidal shaped applicator:

$$h_{\text{theo}}(u,V) = 0.95 \sqrt{\frac{\left[\frac{g^2}{\tan(\varphi)} + \frac{V}{w} - g \cdot l\right]}{\tan\left(\frac{\pi - \varphi}{2}\right) + \frac{\varphi - \pi}{2}}} \left(\frac{\mu \cdot u}{\sigma}\right)^{2/3}$$

Velocity profile:

$$u_{\text{theo}}(x) = 1.08 \frac{\sigma}{\mu} \left\{ h_c \sqrt{\frac{\tan(\frac{\pi-\varphi}{2}) + \frac{\varphi-\pi}{2}}{\left[\frac{g^2}{\tan(\varphi)} + \frac{V_0}{w} - h_c \cdot x - g \cdot l\right]}} \right\}^{3/2}$$

>> Theoretical formula to predict *h* and to propose velocity profile for uniform coating

Outline

Introduction | Organic Photovoltaic, Module Efficiency, Blade Coating

Simulation | CFD Simulation, Empirical equation

Theory | Derivaiton of an analytical equation

Contribution to world record module | Accelerated blade coating

Summary

Accelerated blade coating

Constant velocity

Accelerated coating

Accelerated blade coating

Accelerated blade coating

>> Accelerated blade coating can provide uniform layers for large distances

Accelerated blade coating

Basu et al.: "Large-area organic photovoltaic modules with 14.5% certified world record efficiency"; DOI: https://doi.org/10.1016/j.joule.2024.02.016 Fabian Gumpert, Computational Physics For Green Energy, Faculty of Applied Mathematics, Physics and Humanities, TH Nürnberg Ohm

Accelerated blade coating

Basu et al.: "Large-area organic photovoltaic modules with 14.5% certified world record efficiency"; DOI: https://doi.org/10.1016/j.joule.2024.02.016 Fabian Gumpert, Computational Physics For Green Energy, Faculty of Applied Mathematics, Physics and Humanities, TH Nürnberg Ohm

Accelerated blade coating

>> Material and thickness specific velocity profiles

Basu et al.: "Large-area organic photovoltaic modules with 14.5% certified world record efficiency"; DOI: https://doi.org/10.1016/j.joule.2024.02.016 Fabian Gumpert, Computational Physics For Green Energy, Faculty of Applied Mathematics, Physics and Humanities, TH Nürnberg Ohm

Outline

Introduction | Organic Photovoltaic, Module Efficiency, Blade Coating

Simulation | CFD Simulation, Empirical equation

Theory | Derivation of an analytical equation

Contribution to world record module | Accelerated blade coating

Summary

Summary

New world record efficiency for large-area OPV modules

Summary

- New world record efficiency for large-area OPV modules
- Barely any performance loss upon upscaling from lab cells to >200cm² modules

Summary

- New world record efficiency for large-area OPV modules
- Barely any performance loss upon upscaling from lab cells to >200cm² modules
- Accelerated blade coating enables homogeneous large-area coatings

Summary

- New world record efficiency for large-area OPV modules
- Barely any performance loss upon upscaling from lab cells to >200cm² modules
- Accelerated blade coating enables homogeneous large-area coatings
- Theoretical equations allow time-and resource efficient research with new OPV materials

Thank you very much for your attention

Contact:

Computational Physics For Green Energy: www.th-nuernberg.de/cp4x/

Fabian Gumpert <u>fabian.gumpert@th-nuernberg.de</u> Technische Hochschule Nürnberg Georg-Simon-Ohm Keßlerplatz 12, 90489 Nürnberg In cooperation with:

OPV module

Substrate

CFD Model

Modelling Domain:

>> 2D simulation sufficent to model coating process